已知m是正三角形abc的外接圆 参数方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:31:29
由题可知,O为△ABC的中心.连接OA,OB,OC,做OD⊥AB交AB于DR=6cm,即OA=OB=OC=6cm由于三角形ABC为正三角形,可得:角AOB=120°,所以角AOD=60°所以AD=3根
是1:2设圆的半径为R,则外正三角形的高为3R,内三角形的高为3/2R(3/2):3=1:2再问:我算起来也是1:2,为什么答案上是1:4啊再答:1:2是相似线段的比例,1:4是面积的比例再问:肯定是
三角形ABC为等边三角形时,它的面积最大.它的面积为三角形的边*高/2边=√[R^2+(R/2)^2]*2=√5*R高=R+R/2=3/2R面积=√5R*3/2R/2=3/4*√5*R^2r=a/2/
= a/2 /sin60度 = (根号3)a/4外接圆面积 S = 3.14&nb
作出正三角形ABC的圆心O,连接OA,过点O做OM⊥AB,交点为M,则OA=R,MO=内切圆半径r正三角形∠OAM=30ºsinOAM=MO/OA=r/R=sin30º=1/2∴内
已知正△ABC的边长为6cm(2/3)*√(6²-3²)=2√3则其外接圆的半径为_2√3_cm若正三角形的边长为a(2/3)*√(a²-(a/2)²)=√3a
3:2:1.
正弦定理a/sinA=2R(R为外接圆的半径)边长为aa=2R*sin60°=√3*R边心距d是外接圆半径的一半d=R/2周长=3√3*R面积S=3*边长*边心距/2=3√3*R^2/4
知道是正六边形了,知道是正三角形了,说明三个小三角形全等,又说明了正六边形的周长为三角形的两天变,连接AO,过目点垂直于AC交于O1,OO1=1/2m,求出AO1,4AO1就是答案
连接圆心O和A点成OA,过O点作垂线垂直于AB,垂足为D由题得OA平分∠BAC,D为AB的中点在△OAD中,∠BAO=30°,∠ODA=90°,∠DOA=60°OA=R,所以OD=R/2;DA=R*√
过圆心O作OF⊥BC于F∵△ABC为正三角形∴∠BAC=60∴∠BOC=2∠BAC=120∵OB=OC,OF⊥BC∴BF=CF=BC/2,∠BOF=∠COF=∠BOC/2=60∴BF=OB×√3/2=
∠APB=60°,AB²=PA²+PB²-2PA*PBcos60°=PA²+PB²-PA*PB>=2PA*PB-PA*PB=PA*PB当且仅当PA=P
外接圆半径R=20√3/3内切圆半径r=10√3/3外接圆与内切圆组成的圆环的面积是∏(R^2-r^2)=100∏cm^2
题目没有给出这个三棱柱是不是正三棱柱,若是正三棱柱,则方法如下:第一个问题:过M作MN∥BC交CC1于N,令MN的中点为D.∵ABC-A1B1C1是正三棱柱,∴BM∥CN,又MN∥BC,∴BCNM是平
证明:延长PC至D点,使得PA=PD,连接AD.∵∠DPA=∠CBA=60°,∴⊿PAD是等边三角形,∴DA=PA∵AB=AC,PA=AD,∠BAP=∠CAB-∠PAC=∠DAP-∠PAC,∴⊿APB
解题思路:用坐标法证明即可,以三角形ABC的中心为原点,平行于三角形一边为坐标横轴,设正三角形ABC的外接圆方程为X^2+Y^2=R^2,解题过程:解:以三角形ABC的中心为原点,平行于三角形一边为坐
正三角形ABC的内切圆与外接圆的面积之比=半径比的平方两半径在同一个直角三角形中,且有一角为30度,比1/2所以正三角形ABC的内切圆与外接圆的面积之比为1/4
正三角形ABC的边长为6那么高是h=√(6^2-3^2)=3√3所以内切圆半径是r=h/3=√3外接圆半径是R=2h/3=2√3所以它的内切圆是S=πr²=3π外接圆面积是S=πR²
正三角形吗再问:已补图。你看看吧再答:没有看到图
由“正弦定理”得:2R=2/sin60º===>R=2√3/3.