已知bc是圆o的直径ac切与点cab交圆o与点d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:15:09
夜猫猫_涵er,(图见参考资料.)1)如图1.连接DE、DF,AD为直径,则∠AED=90°=∠ADB;又∠BAD=∠BAD.则△AED∽△ADB,AD/AE=AB/AD,AD^2=AE×AB⑴;同理
延长AC.过点G作AB的平行线,交AC延长线于点H.因为GH//AB 所以△CGH相似于等腰直角△ACB,△DGH相似于△ADF因为AC=BC=6 ∠ACB=90度 D为
(1).相等链接OD两点.由题可知,三角形ACB为等腰直角三角形,O为斜边AB中点,AC为圆的切线,则OD垂直AC,即OD平行于BC,推出角DOA=角CBA.因为角OFD=角ODF,所以角DOA=2倍
EP/BC=AE/ABED/BC=AE/OB显而易见的可以看出ED=2EP哪里看不懂,可以继续问.
1.证明:连接OC则OA=OC,OC⊥CD∴∠OAC=∠OCA∵AC平分∠DAO∴∠OCA=∠OAC=∠CAD∴AD‖OC∴AD⊥CD2.连接BC∵∠DAC=30°∴∠BAC=30°∵AB是直径∴∠A
是三分之根号三或是根号三
连接OE交AD于G∵E为弧AD中点,∴OE⊥AD,AG=DG,∵BC是切线,AC是直径,∴∠ACB=90°,在RTABC中,cosB=BC/AB=3/5,设BC=3X(X>0),则AB=5X,∵AC=
∵AB为⊙O的直径,AB⊥CD∴∠ACB=∠CEB=90度在△ABC和△CBE中∵∠ACB=∠CEB,∠B=∠B∴∠A=∠BCD又OC=OA∴∠A=∠ACO∴∠ACO=∠BCD
解题思路:用圆性质证明解题过程:请把完整的条件写一下。最终答案:略
连接AD,OD;推论一因为AB为直径则在三角形ABD中∠DBA+∠DAB=∠BDA=90°,∠DAB=∠ODA;推论二因为AB⊥AC则在三角形ABC中∠DAC=∠DBA推论三又因为E为AC中点在直角三
连接OC,AC,BC...假设第一个三等分点为C,第二个三等分点为D∵C,D为半圆的三等分点∴CD∥AB 角COD=60°又∵OC=OD∴△OCD为等边三角形∴CD=OC=OA(半径相等)∴
设AB=2a(a>0)连接CA,CB;∵AB是圆O的直径∴∠ACB=90°∵点C是半圆上的三等分点∴弧AC﹙或BC﹚=60°∴∠ABC﹙或∠BAC)=30°∴AC﹙或BC)=½AB=a,BC
证明:因为OD∥BC,BC是三角形底边所以三角形ABC和三角形AOC相似又因为O为AB中点(圆心均分直径)OD∥BC所以OD为中位线所以D为AC中点AD=CD还有问题追问哦亲~
(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图
OD=3即圆的半径,则,OF=3BF=3根号2-3接着求出BF/FAAD/DC=1接着利用截线DFG与三角形ABC的梅涅劳斯定理,求出CB/BG接着就易求CG了不知道这是什么程度的题目,用了梅涅劳斯定
1.连接od∵od=oc=r,oc=1/2ac=1/2ab∴od=1/2ab∵ao=co所以od‖ab因为角dea=90°,所以od⊥efDE是圆O的切线,得证解2:过c做ab平行线交ef与gfc:c
AD是圆O的直径,△ABCD的BC边过D点,AB、AC与圆O相交于点E、F,切AE*AB=AF*AC,求证;BC是圆O的切线..证明:∵AE*AB=AF*AC∴AE/AC=AF/AB,又角BAC=角C
容易推得△AEO相似△ACB又因为BC=5AC=12得AB=13设半径为xAO=AC-CO=12-x由相似得OE/BC=AO/ABx/5=(12-x)/1313x=60-5x18x=60x=10/3即
结论:直线PB与○O相切.理由如下:因为PO//AC,所以∠BOP=∠ACB(两直线平行,同位角相等)又∠AOB=2∠ACB(同弧所对的圆心角是其圆周角的2倍)且∠AOB=∠BOP+∠AOP则2∠AC
PB与圆O相切,理由如下:连结OA∵PA切圆O于A,∴∠OAP=90°∵AC∥OP,∴∠C=∠POB,∠CAO=∠AOP,∵OA=OC,∴∠C=∠CAO,∴∠AOP=∠BOP,又∵OP=OP,OA=O