已知A为3阶正交矩阵,则|2A^2|=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:44:13
已知A为3阶正交矩阵,则|2A^2|=?
线性代数问题,已知A为2n+1阶正交矩阵且|A|=1,证A必有特征值1

用A'表示A的转置,E表示单位阵.由A为正交阵,有A'A=E.于是|E-A|=|A'A-A|=|(A'-E)A|=|A'-E|·|A|=|A'-E|(∵|A|=1)=|(A-E)'|(∵E'=E)=|

如果A,B为n阶正交矩阵,求证AB也是正交矩阵.

这是显然的因为A,B为n阶正交矩阵所以A^=A-1,B^=B-1因此(AB)^=B^A^=B-1A-1=(AB)-1从而AB也是正交矩阵

已知A为2n+1阶正交矩阵,且lAl=1,试证A必有特征值1

证明:因为A为正交矩阵,所以AA^T=E.所以|A-E|=|A-AA^T|=|A(E-A^T)|=|A||E-A^T|=|(E-A)^T|=|E-A|=|-(A-E)|=(-1)^(2n+1)|A-E

线性代数:n阶方阵A为正交矩阵,证明A*为正交矩阵

因为n阶方阵A为正交矩阵,故A'A=E,得A^-1=A'可逆!且IA'AI=IA'IIAI=IAI^2=IEI=1.A^-1=A*/IAIA*=IAIA^-1=IAIA'故(A*)'A*=(IAIA'

线性代数证明:若矩阵A为正交矩阵,证明A*也为正交矩阵

人家回宿舍告诉你不好打再问:哇唔~啥时候回来吖~

证明正交矩阵性质1.若A为正交矩阵,则A^(-1)也为正交矩阵;2.若A、B为同阶正交矩阵,则AB也为正交矩阵;3.若A

证明:1、令T=A^(-1),那么TT'=A^(-1)A^(-1)'=(A'A)^-1=I,所以T是正交矩阵.其中T'表示T转置.2、因为(AB)(AB)'=ABB'A'=A(BB')A'=AA'=I

线性代数,已知A是2n+1阶矩阵正交矩阵,即AA^T=A^TA=E,证明E-A^2的行列式为零

|A(A^T-E^T)|=|A||A^T-E^T|=|A||(A-E)^T|=|A||A-E|注:知识点|A^T|=|A|.

证明“若A为n阶正交阵,则其伴随矩阵A*也一定是正交矩阵.”

知识点:(A*)^T=(A^T)*因为A是正交的,所以A^TA=E(或AA^T=E)所以(A^TA)*=E*所以A*(A^T)*=E所以A*(A*)^T=E所以A*是正交矩阵.

设A为n阶矩阵,证明A为正交阵的充分必要条件是A*为正交阵

A为正交阵当且仅当A的逆为正交阵(这个结论应该都讲过,不用证了吧……要证的话也很简单),A*=|A|乘以A的逆,得证.

已知n阶对称矩阵A(未必可逆)满足A^=2A,证明A-I是正交矩阵

A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握

设A为正交矩阵,则A的行列式=?

±1再问:怎么算?再答:

设A为正交矩阵,证明A^2也是正交矩阵

正交矩阵的定义:设A为n阶方阵,若A'A=E,则称A为正交矩阵.其中A'表示A的转置矩阵.证明:因为A为正交矩阵,所以A'A=E由转置的性质(AB)'=B'A'所以有(A^2)'(A^2)=(A'A'

正交矩阵的性质A是n阶正交矩阵,证明A*也是正交矩阵结果如下:由于A为正交矩阵,所以|A|^2=1,A^-1也是正交矩阵

|A|表示A的行列式,行列式是能计算出来的,是一个具体的数哦,所以这里|A|是当一个常数一样得提出来做乘积,当然不需要做转置.

正交矩阵问题A是一个n阶正交矩阵,求证:(1)若|A|=-1,则|A+E|=0(2)若|A|=1,且n为奇数,则|A-Z

(1)因为A是一个n阶正交矩阵所以AA'=E所以|A+E|=|A(E+A')|=|A||A'+E|=|A||A+E|=-|A+E|则|A+E|=-|A+E|=0(2)我估计您Z打错了|A-E|=|A(

已知A是n阶正交矩阵,A*是A的伴随矩阵,证明A*是正交矩阵.

detA=1ordetA=1A*A=EorA*A=-EA*=A^TorA*=-A^TA*^T=AorA*^T=-A,A*^TA*=A*A*^T=E所以:A*是正交矩阵.再问:看不懂。。它中间那个or要

A,B均为n阶矩阵,B B为正交矩阵,则|A|^2=

A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|

矩阵证明题1、证明:若A与B都是n阶正交矩阵,则AB也是正交矩阵.2、证明:对任意的n阶矩阵A,A+A^T为对称矩阵,A

1.因为若A与B都是n阶正交矩阵所以AA'=A'A=E,BB'=B'B=E所以(AB)'(AB)=B'A'AB=B'B=E所以AB是正交矩阵.2.因为(A+A')'=A'+(A')'=A'+A=A+A

已知A、B为阶正交矩阵,且|A|不等于|B|,证明A+B不可逆矩阵

由A,B正交,所以有AA'=A'A=E,BB=B'B=E所以|A'(A+B)|=|A'A+A'B|=|E+A'B||B'(A+B)|=|B'A+B'B|=|B'A+E|=|(B'A+E)'|=|A'B