已知ab是圆o的弦 半径oa 20cm 角aob等于120度求三角形的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:01:50
圆心为qad=4,db=1ad=3qa^2+qb^2=ab^2ad^2+qd^2=qa^2qd^2+db^2=qb^2
连接OA、OB、OD,OD交AB于E∵D是弧AB的中点∴弧AD=弧BD∴∠AOD=∠BOD∵OA=OB∴AE=BE=AB/2=6,OD⊥AB∴OE=√(OB²-BE²)=√(100
OA=OC=半径,角AOC=60°三角形OAC就是等边三角形AC弦=2
∵∠COD=120°CO=DO∴∠COE=∠DOE=60°又∵AB⊥CD∴∠C=∠D=30°又∵OD=8cm∴OE=4cm∴在RT△OED中ED=根号下OD²+OE²=根号下8
连接OE,OM=OC/2=OE/2,OC垂直于AB,角OEM=30度.EF//AB,角AOE=角OEM=30度.[内错角]角EOC=90度-角OEM=90度-30度=60度.角CBE=角EOC/2=3
勾股定理得,r^2=1/4r^2+(1/2ab)^2所以 (1/2ab)^2=3/4r^2所以1/2ab=二分之根号3倍的r所以ab=根号3倍的
过O作OE⊥AB,垂足为E,连接OA,∵AB=10,PA=4,∴AE=12AB=5,PE=AE-PA=5-4=1,在Rt△POE中,OE=OP2−PE2=52−12=26,在Rt△AOE中,OA=AE
第一个问题:过C作CE∥AO交BO于E.∵CE∥AO、AC=BC,∴CE=AO/2=5/2、BE=EO=BO/2=5/2,∴DE=EO-DO=5/2-DO.∵CE∥OP,∴△CED∽△POD,∴CE/
证明:连接OB因为OB=OA所以∠OAB=∠OBA因为BC=CD所以∠CDB=∠DCB因为∠ADO=∠CDB所以∠ADO=∠DCB因为∠ADO+∠OAB=90所以∠DCB+OBA=90所以∠OBC=9
3做O到AB的垂线OC,OA=5,AC=4,则OC=3,勾股定理.PC=BC-PB=1
很高兴为您解答.可知:则AD=BD=(r根号3)/2直角三角形AOD中解得OD=r/2因此OD=DC=r/2所以四个直角三角形AOD,BOD,ADC,BDC全等所以四条边相等所以为菱形则面积=根三/2
如图,连结OAOB∵AB=AO=BO∴等边△BAO∴∠DAO=60°∵AO=5∴OD=2分之5倍根号3不懂接着问我再问:图呢再答:
答;由题意可知.A.C.D三点在以B为圆心,a为半径的圆上.圆弧AC所对的圆心角是角ABC=60°.所对圆弧角是角ADC,则等于30°有因为角ADC等同于角ADE是以O为圆心的圆弧角,则圆弧AE对应的
运用弦于圆心的关系,过圆心做弦的垂线,求的O到AB的距离为2倍的根号3
(1)由⊙O的半径r=10=AB,知△AOB是等边三角形,∴α=∠AOB=60°=π3.(2)由(1)可知α=π3,r=10,∴弧长l=α•r=π3×10=10π3,∴S扇形=12lr=12×10π3
第一题是(1)..第二题是(4)..第三题是(1)..第四题是(相等)..
根据垂径定理,得半弦长是4cm.再根据勾股定理,得其半径是5cm.故选C.
分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,根据垂径定理得AE=12AC=32,AD=12AB=22,∴sin∠AOE=AEAO=321=32,sin∠AOD=ADOA=
证明:连接DO,延长交圆于E.连接AEDE是直径,AD与AE垂直