已知AB为圆O的直径,Q为BC中点,PB,PC为圆O的切线,求证:
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:31:23
(1)第一问有点无厘头~BD=BE.BC⊥AB.AB≥DE.∠EDB=∠DAB.∠ADB=90°.………………汗这种问题(2)因为∠DCB=∠BCA,∠CDB=∠CBA=90°,所以△DCB∽△BCA
P是BD的中点,∴P也是AC的中点,且在圆上,∠APB=90∴四边形ABCD是菱形△APE∽△AQCAP/AQ=AE/AC∴AP=2根号3AC=2AP=4根号3用勾股定理可得QC=2根号3则∠ACB=
(1)连接OD∵OC∥AD∴∠COD=∠ODA,∠BOC=∠OAD∵OA=OD∴∠OAD=∠ODA∴∠BOC=∠DOC∵OB=OD,OC=OC∴△BOC≌△DOC∴∠ODC=∠OBC=90°∴CD是圆
求啥啊再问:判断直线PQ与圆O的位置关系。,给了,做不出就别说话哦再答:1,连接cpbc直径所以△BCP是直角三角形△ACP也是直角三角形又因为PQ是△ACP的中线所以PQ=CQ∠QCP=∠QPC又因
OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则
证明:连接BE因为AE为圆O的直径故:∠ABE=90度又:AD为三角形ABC的BC边上的高故:∠ADC=∠ABE=90度又:∠ACD=∠AEB(同圆中,同弧所对的圆周角相等)故:△ACD∽△AEB故:
3cm根据圆的特性角ACB为直角,所以三角形ACB为直角三角形O为AB中点,所以OD/BC=AO/AB=1/2所以OD=3CM
证明:连接OC∵OB=OC∴∠OBC=∠OCB∵PO∥BC∴∠AOP=∠OBC,∠COP=∠OCB∴∠AOP=∠COP∵PO=PO,OC=OA∴△OAP≌△OCP∴∠OAP=∠OCP∵是切线切线,AB
解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,
证明:连接OC.∵OD⊥BC,O为圆心,∴OD平分BC.∴DB=DC,在△OBD与△OCD中,OB=OCDO=DODB=DC∴△OBD≌△OCD.(SSS)∴∠OCD=∠OBD.又∵AB为⊙O的直径,
∵四边形ABCD内接于圆o∴∠BAD+∠BCD=180°∵AD∥BC∴∠BCD+∠ADC=180°∴∠BAD=∠ADC∴梯形ABCD是等腰梯形,AB=CD∵AB=BC∴AB=BC=CD∴∠AOB=∠B
证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线
因为AB是圆的直径所以2AO=AB又D为AC的中点所以2AD=AC又角DAO=角CAB所以三角形DAO相似于三角形CAB所以2OD=BC=8cmOD=4
已知AB为圆O的直径,所以OA=OB,且OD∥BC交AC于D,则OD是圆内接三角形的中位线,所以OS=1/2BC,若OD=5cm,则BC=10cm,三角形中位线定理:三角形的中位线平行于第三边,并且等
(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图
(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC
C在圆弧上,AB为圆O的直径,所以三角形ACB为直角三角形,∠ACB=90°,OD//BC,交AC于点D,所以∠ADO=∠ACB=90°,∠AOD=∠ABC,∠A=∠A,故直角三角形ADO∽直角三角形
假设C在圆弧上,AB为圆O的直径,所以三角形ACB为直角三角形,∠ACB=90°,OD//BC,交AC于点D,所以∠ADO=∠ACB=90°,∠AOD=∠ABC,∠A=∠A,故直角三角形ADO∽直角三
假设C在圆弧上,AB为圆O的直径,所以三角形ACB为直角三角形,∠ACB=90°,OD//BC,交AC于点D,所以∠ADO=∠ACB=90°,∠AOD=∠ABC,∠A=∠A,故直角三角形ADO∽直角三