已知a,b,c均为正数,,求证(ab cd)(ac bd)≥4abcd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:07:09
已知a,b,c均为正数,,求证(ab cd)(ac bd)≥4abcd
求证:(1)已知a,b,c均为正数,则1/2a+1/2b+1/2c>=1/(a+b)+1/(b+c)+1/(c+a);

(1)首先证明对于任意两个正数x,y,有1/4x+1/4y>=1/(x+y),证明方法很简单,就是1/4x+1/4y=(x+y)/4xy,4xy=1/(x+y),其次1/2a+1/2b+1/2c=(1

均值不等式证明题已知a,b,c,d均为正数,求证:b^2/a+c^2/b+d^2/c+a^2/b>=a+b+c+d

由柯本不等式得(b²/a+c²/b+d²/c+a²/b)(a+b+c+d)>=(b+c+d+a)²因为a+b+c+d>0所以(b²/a+c&

设A.B.C均为正数,求证c/(a+b)+a/(b+c)+b/(c+a)>=3/2

左边=(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(c+a)-3=0.5×(a+b+b+c+c+a)*[1/(a+b)+1/(b+c)+1/(c+a)]-3≥0.5×{3×

高二均值不等式,已知a,b,c都为正数,求证:(a+b+c)(1/(a+b)+1/(b+c)+1/(a+c))>=9/2

证明:分析:∵a、b、c均为正数∴为证结论正确只需证:2(a+b+c)[(1/a+b)+(1/b+c)+(1/c+a)]>9而2(a+b+c)=(a+b)+(a+c)+(c+b)又9=(1+1+1)(

已知abc均为正数,求证1/2a+1/2b+1/2c>1/a+b +1/b+c +1/a+c

是证明1/(2a)+1/(2b)+1/(2c)>1/(a+b)+1/(b+c)+1/(a+c)还是证明1/(2a)+1/(2b)+1/(2c)>1/a+b+1/b+c+1/a+c?如果为前者,那么当a

已知abc均为正数,求证a2+b2+c2+(1/a+1/b+1/c)2>=6根号3

用幂平均不等式:((a^2+b^2+c^2)/3)^(1/2)≥((1/a+1/b+1/c)/3)^(-1);整理一下:a^2+b^2+c^2≥3*((1/a+1/b+1/c)/3)^(-2)=27*

已知a,b,c为正数,求证:2ab/a+b

a,b为正数(√a-√b)²>=0a+b>=2√ab2ab/(a+b)

一道均值不等式问题已知a.b.c均为正数,且a b c=1,求证1/(a b) 1(b c) 1/(c a)大于等于9/

题目应为:已知a、b、c均为正数,且a+b+c=1,求证:1/(a+b)+1(b+c)+1/(c+a)大于等于9/2证明:因为a、b、c均为正数由柯西不等式得[(a+b)+(b+c)+(c+a)][1

已知a ,b ,c 为正数,求证 a^2a × b^2b × c^2c ≥a^(b+c) × b^(c+a) × c^(

先证a^ab^b≥a^bb^a,即(a/b)^a≥(a/b)^b,若a≥b,则a/b≥1,(a/b)^a≥(a/b)^b;若a

已知a,b,c为正数求证:(a^3/bc)+(b^3/ac)+(c^3+ab)≥a+b+c

证明:∵(a^2-b^2)^2+(a^2-c^2)^2+(b^2-c^2)≥0∴a^4+b^4+c^4≥a^2b^2+a^2c^2+b^2c^2∴a^4+b^4+c^4-abc(a+b+c)=(2a^

已知abc为正数,且a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc

∵a+b+c=1∴1-a=b+c同理可知1-b=a+c1-c=a+ba、b、c都是正数(√a-√b)²≥0a+b≥2√ab同理可得a+c≥2√acb+c≥2√bc(1-a)(1-b)(1-c

已知abcd均为正数,求证:a+b+c+d/4>=4次方跟下abcd

(根号a-根号b)²≥0a-2根号(ab)+b≧0a+b≧2根号(ab)同理c+d≧2根号(cd)a+b+c+d≧2根号(ab)+2根号(cd)又[4次方根号下(ab)-4次方根号下(cd)

已知a,b,c均为正数且a+b+c=1,求证a分之1+b分之1+c分之1大于等于9?

∵a+b+c=1原式=(a分之一+b分之一+c分之一)*(A+B+C)=3+A分之B+A分之C+B分之A+B分之C+C分之A+C分之B∵A分之B+B分之A≥2A分之C+C分之A≥2B分之C+C分之B≥

已知a、b、c都是正数,求证:

由于a^2/b+b≥2ab^2/c+c≥2bc^2/a+a≥2c上面3式相加得a^2/b+b+b^2/c+c+c^2/a+a≥2a+2b+2c(a^2/b+b^2/c+c^2/a)+(a+b+c)≥2

已知a,b,c,为不全相等的正数,求证,b+c-a/a+c+a-b/b+a+b-c/c>3

+c-a/a+c+a-b/b+a+b-c/c>3[(b+c+a)/a]+[(c+a+b)/b]+[(a+b+c)/c]>9a,b,c,为不全相等的正数[(b+c+a)/a]+[(c+a+b)/b]+[

已知a,b,c为不全相等的正数,求证 (b+c-a)/a+(c+a-b)/b+(a+b-c)/c>3

以前一定会做现在全忘了给你个思路3个不全相等的正数一定可以看着一个三角型的三边边边相除就是sinAsinBsinCcosA等的关系且A+B+C=180老了什么都不记得了

已知a,b均为正数,2c>a+b,求证c^2>ab

最简单易懂的答案因为2c>a+b所以4c^2>(a+b)^2=(a-b)^2+4ab>4ab所以c^2>a

已知啊,b,c.均为正数.求证:bc/a+ac/b+ab/c>a+b+c.

证:bc/a+ac/b+ab/c=abc/a²+abc/b²+abc/c²=abc(1/a²+1/b²+1/c²)(1/a-1/b)&sup

已知a,b,c都是正数,求证:a

证明:∵a,b,c都是正数,∴a2b2+b2c2≥2ab2c,a2b2+c2a2≥2a2bc,c2a2+b2c2≥2abc2∴2(a2b2+b2c2+c2a2)≥2ab2c+2a2bc+2abc2∴a

已知a,b为正数,2c>a+b,求证:c-根号c*2-ab

根据题意a,b为正数即a*b>0所以根号(c^2-ab)>0因为2c>a+b所以c>0所以c-根号(c*2-ab)a*b所以c>=ac>=b因为a