已知:四边形ABCD是正方形,G是BC上的任意一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:00:31
已知:四边形ABCD是正方形,G是BC上的任意一点
如图所示,四边形ABCD是一个正方形.E,F分别为CD和BC边上的中点.已知正方形ABCD的边长是30厘米,那

设O是CF,AE交点,则O是⊿BCD的重心.AO/AE=2/3阴影面积=S⊿ABC+S⊿AOC=S⊿ABC+(2/3)S⊿ACE=S⊿ABC+(2/3)(1/2)S⊿ACD=S⊿ABC+(1/3)S⊿

已知四边形EFGH,由矩形ABCD的外角平分线围成,求证:四边形EFGH是正方形

∵ABCD是矩形∴∠ABC=∠BCD=∠CDA=∠DAB=90°AB=CD,BC=AD∴ABCD是矩形的外角也是90°∴矩形ABCD的外角平分线,把外角平分成两个45°角∴△ABE、△BCF、△CBG

如图已知四边形ABCD是边长为2的正方形以对角线BD为边

① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2   

已知四边形ABCD是边长为4的正方形

解题思路:利用等腰三角形性质解题过程:见附件最终答案:略

如图中四边形ABCD、CEFG均为正方形.已知正方形ABCD的边长是5厘米,连接BD、DF、BF.求三角形BDF的面积是

如图所示,连接CF,由分析可知阴影部分的面积:5×5÷2,=25÷2,=12.5(平方厘米).答:阴影部分的面积是12.5平方厘米.

已知如图,在四边形ABCD中,对角线相交于点O,AO=BO=CO=DO,AC⊥BD.求证:四边形ABCD是正方形

由AO=BO=CO=DO,AC⊥BD根据三角形全等,可得AB=CD,AD=BC,所以四边形ABCD是平行四边形(两组对边分别相等)又因为AC=BD,AC⊥BD,所以平行四边形ABCD是正方形(对角线垂

如图:四边形ABCD是正方形,ABHE是梯形,ACHE是平行四边形,ECGF是长方形,已知AE=7

由题意知:BH=12即BC+CH=12,ACHE是平行四边形故有CH=AE=7,AC=EH所以BC=5因为四边形ABCD是正方形,所以AD=AB=BC=CD=5,则有DE=2图中阴影部分面积S=三角形

如图所示,已知四边形ABCD是正方形,对角线AC,BD相交于点O,四边形AEFC是菱形

本题有结论:∠CAE=30°.理由:∵ABCD是正方形,∴OB=1/2AC,OB⊥AC,∵ABFC是菱形,∴AE=AC,AC∥BF,∵EH⊥AC,∴四边形OBEH是矩形,∴EH=OB,∴tan∠EAH

已知:正方形ABCD中点EFGH分别是AB、BC、CD、DA的中点,试判断四边形ABCD形状是正方形吗?

因为是正方行,∠A=∠B=∠C=∠D=90°,E,F,G,H各是它们的中点,AH=AE=BE=BF=CF=CG=DG所以△AEH全等于△EBF全等于△FCG全等于△GDH所以有EH=HG=GF=FE.

已知四边形ABCD是正方形,BE=AF,求证:CE²=AE(AH+HE)

在△DAF和△ABE中AD=AB∠DAF=∠ABEAF=BE所以△DAF全等于△ABE所以∠ADF=∠BAE,BE=AF因为∠DAH+∠BAE=90°所以∠ADF+∠DAH=90°即∠DHA=90°C

如图,已知四边形ABCD是正方形,SB⊥平面ABCD,SB=AB=2

sb垂直于平面ABCD且SB=AB=2因此SA=2倍更号2同理SC=2倍更号2AC是正方形对角线=2倍更号2因此SAC是等边三角形O是AC中点因此SO垂直于AC即AC垂直SO.BO=二分之一的BD=更

四边形EFGH是正方形ABCD的内接四边形,已知EG=3,FH=4,四边形EFGH的面积为5,求正方形ABCD的面积.

在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup

已知四边形ABCD是正方形,以AD为边在正方形ABCD所在平面内作等边三角形PAD,那么∠BPC的度数是______.

如图(1),∵四边形ABCD是正方形,△PAD是等边三角形,∴∠BAP=∠BAD+∠PAB=90°+60°=150°.∵PA=AD,AB=AD,∴PA=AB,∴∠ABP=12(180°-150°)=1

四边形EFGH是正方形ABCD的内接四边形,已知EG=3,FH=4,四边形EFGH的面积为5,求正方形ABCD的面积.具

在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup

已知在平行四边形ABCD中,∠1=∠2=45°求证:四边形ABCD是正方形

证明:∵四边形ABCD是平行四边形∴AD//BC∴∠2=∠BCA∵∠1=∠2∴∠1=∠BCA∴AB=BC∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)∵∠BAD=∠1+∠2=45°+45°=90

四边形ABCD是正方形 ……

延长DC,AF交于N,则三个三角形NCF,ABF,DAE都全等,得角AME=BAF,DC=CN,因角ADE+AED=90度,所以角BAF+AED=90度,角AME=90度=DMN,CM是斜边上中线,所

已知正方形ABCD,M是AB中点,N是BC中点,AN与CM相交于O,那么四边形AOCD和四边形ABCD的面积之比是

如图O是△ABC的重心,OT/TB=1/3 DO/DB=﹙3+1﹚/﹙3+3﹚=2/3四边形AOCD和四边形ABCD的面积之比=DO∶DB=2∶3

已知四边形ABCD中,AB=BC=CD,角A=角B=90°,求四边形ABCD是正方形.

因为角A+角B=180度所以AD平行BC又因为角A=角B=90度AB=DC(平行之间距离相等)所以角C=角D=90度综合上述AB=BC=CD角A=角B=角C=角D=90度所以四边形ABCD为正方形