已知:AB是○O直径,CD⊥AB,弧AC=弧FC,求证:AE=CE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:36:08
已知:AB是○O直径,CD⊥AB,弧AC=弧FC,求证:AE=CE
已知:AB是圆O的直径 CD是铉 AE⊥CD BF⊥CD 求证:EC=DF

过O作OG⊥CD于G∵O为圆心,CD为弦,OG⊥CD∴CG=DG(弦的过圆心垂线平分弦)又∵AE⊥CD,BF⊥CD∴AE‖BF∴OA/OB=EG/FG(相似)又∵OA=OB∴EG=FG又∵CG=DG∴

如图,AB是半○O的直径,CD是一条动弦,CE⊥CD交AB于E,DF⊥CD交AB于F (1)AE=BF(2)已知AB=2

看一下http://www.vtigu.com/question_9_74_11282_1_63_0_50069269.htm视频讲解

已知,如图,AB,CD是○O的直径,且AB⊥CD,E是OC的中点,过点E作FG∥AB,交○O于点F,G.

你连接OF,OG.三角形EOF里面,EFO是直角,OE=1/2OF,所以FOE=60°,类似GOE=60°,所以弧FCG=120°.而弧AF=90°-FOE=30°所以弧FCG=4弧AF

如图,AB是圆O的直径,弦CD⊥AB于P,已知CD=8,∠B=30°,求元O的直径

连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30

已知AB是圆O的直径,AC是弦,CD⊥AB,D为垂足,AE是圆O的切线,A为切点且AE=AC,求证:EF·EB=AD·A

【F为BE与圆O的交点吧】证明:∵AE是切线∴AE²=EF·EB【切割线定理】∵CD⊥AB,AB是直径∴AC²=AD·AB【射影定理】∵AE=AC∴EF·EB=AD·AB【射影定理

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠

已知AB是圆O的直径,弦CD⊥AB于E,若弦CD把圆O分成2:1的两部分,且CD=4根号3,求圆O的直径及AE的长.

/>连接OC,OD∵弦CD把圆O分成2:1的两部分∴∠COD=120°∴CE=2根号3∴OC=4∴圆O的直径=8∵∠C=30°∴OE=2∴AE=6或2

如图,已知AB是⊙O的直径,弦CD⊥AB于E,CD=16cm,AB=20cm,求OE的长

因为AB=20cm,所以r=10cm,又弦CD⊥AB于E,CD=16cm,所以CE=CD/2=8设OE=x,则AE=10-x,BE=10+X,所以在直角三角形ABC中,CE^2=AE*BE,即:8^2

如图,CD为⊙O的直径,OB是⊙O的半径,OA⊥OB,作AE⊥CD于点E,BF⊥CD于点F,已知AB=5√2,则CE+A

CE+AE+BF+DF=CE+OE+OF+DF=CD=圆直径=10~一线三等角那三个直角三角形都是等腰直角~所以有了最上面的~

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD

因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=

已知,如图,AB是圆O的直径,CD是弦,AE⊥CD,BF⊥CD,垂足分别为E,F 若AE=a,EF=b,BF=c,

图中G是BF与圆的交点,连接AG因为AB是直径,所以角AGB=90度.所以AEFG是矩形,AG=EF=b,AE=GF=a易证EC=DF,设EC=DF=d连接AC,AD,BD则tan角EAC=EC/AE

如图所示,在圆O中,CD是直径,AB是弦,AB⊥CD于M,

因为AB⊥CD,AM=½AC所以角MAC是30度连接CAOA则角AOD=角CAO+角ACO=60度所以AO=AM除以根号3再乘以2=2倍根号3(有一个角是30度的直角三角形中)所以CD=

如图,已知AB是⊙O的直径,CD⊥AB,垂足为D,AE⊥AB,且AE=AC,BE交圆O于点F 求证:EF·EB=AD·A

连接BC因为EF·EB=EA的平方又因为EA=AC所以EF·EB=AC的平方因为在直角三角形ABC中AC的平方=AD·AB所以EF·EB=AD·AB再问:为什么“EF·EB=EA的平方”“AC的平方=

已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF

(1)证明:如图1,连接FO并延长交⊙O于Q,连接DQ.∵FQ是⊙O直径,∴∠FDQ=90°.∴∠QFD+∠Q=90°.∵CD⊥AB,∴∠P+∠C=90°.∵∠Q=∠C,∴∠QFD=∠P.∵∠FOE=

AB是半圆O的直径,C是半圆O上异于A,B的点,CD⊥AB,垂足为D,已知AD=2,CB=4*根号3,则CD=——?

设AC=Y,BD=X则有Y^2+48=(2+X)^2Y^2-4=48-X^2得(x+1)^=49(负值舍去)x=6CD=√(48-36)=2√3根号可以用“数学符号”中的对勾代替.

如图,已知AB是圆O的直径,CD是弦,AF⊥CD于,BF⊥CD于F

BF与园O焦点为G,则AEFG为矩形则有AE=FG(1)又,梯形ACDG是等腰梯形(可简单证明,略)则角ACE=角GDF(2)根据(1)、(2)可得,两个直角三角形AEC和GFD全等

如图,已知AB是圆o的直径,CD是弦,且CD⊥AB于点H,则图中相似三角形有 A 6对 B 5对 C 4对 D 3对

易知角ACB=90°AC⊥BC全等是相似的特殊情况,如此判断的话ACH∽BCH∽ABC∽DBH两两之间相似,总共有6对如果认为全等不属于相似,那么减去BCH≌DBH这一对,还有5对相似但不全等我认为全

已知:AB是圆O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,求证:EC=DF

过O作OG⊥CD于G∵O为圆心,CD为弦,OG⊥CD∴CG=DG(弦的过圆心垂线平分弦)又∵AE⊥CD,BF⊥CD∴AE‖BF∴OA/OB=EG/FG(相似)又∵OA=OB∴EG=FG又∵CG=DG∴

如图,已知AB是圆O的直径,CD⊥AB,垂足为D,AE⊥AB,且AE=AC,BE交圆O于点F.求证:EF·EB=AD·A

连接AF.据题意可得:EF×EB=AE²AD×AB=AC²∵AE=AC∴EF×EB=AD×AB再问:��˵һ��ΪʲôEF��EB=AE²��/再答:�ߨSAEF�רSB

已知:AB是圆O的直径,弦CD⊥AB于点G,E是直径AB上一点,直线DE交圆O于点F,

连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC