已知.如图,AB平行DE,AC平行DF,BC平行EF,求证△DEF相似于△ABC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:02:13
过点A作直线GH平行于BC∵GH平行于BC∴∠GAB=∠B∠HAC=∠C(两直线平行,内错角相等)又∵∠GHA=180°∴∠GAB+∠BAC+∠HAC=180°∴∠A+∠B+∠C=180°
∵BE=CF∴BE+EC=CF+EC即BC=EF∵AB=DE,AC=DF∴△ABC≌△DEF(S.S.S)∵∠B=∠DEF,∠ACB=∠F∴AB∥DE,AC∥DF
5.25再答:4/7再答:5.25/7再答:3/4最后一个。再答:就是3/4
应该是EA⊥AB吧∵EA=AB=2BC,D为AB中点∴AD=BC∵EA⊥AB且EA∥CB∴∠EAD=∠ABC在Rt△EAD与△ABC中∵EA=ABAD=BC∠EAD=∠ABC∴△EAD≌△ABC∴AC
证明:∵AB=AC∴∠B=∠C又∵∠1=∠2,DE=DF∴⊿BDE≌⊿CDF(AAS)∴BE=CF∵AE=AB-BE,AF=AC-CF∴AE=AF∴∠AEF=∠B=(180º-∠A)÷2∴E
由已知AB=DE,BC=EF,角B=角E满足两边夹一角所以三角形ABC与三角形DEF全等所以角ACB=角DFE又因为角ACB+角ACF=180,角DFE+角DFC=180所以角ACF=角DFC所以AC
多年未解过题了,好多定理忘记了,我给个思路吧.可能不规范,你自己润色一下.已知:直角三角形DEC的斜边CD、直角边DE与直角三角形BFA的斜边AB、直角边BF相等.则直角三角形DEC与直角三角形BFA
题目的条件有问题,1、修改一:AB=ED,AC=EF,BC=DF,∴由“边边边”可证△ABC≌△EDF,∴∠B=∠D,∴AB∥FD﹙内错角相等,两直线平行﹚.2、修改二:AB=FD,AC=FE,BE=
∵DE//AB已知∴∠1=∠2两直线平行,内错角相等∵DF//AC已知∴∠2=∠A两直线平行,内错角相等∴∠1=∠A等量代换
你的ID现在是一级,暂时还不能发图.多回答问题,多给人投票,过几天就能升到二级了.1.只有二级及二级以上用户登录后可以上传图片.2.您只能上传本地电脑中的图片,对于网上的图片,可以先下载到本地,然后再
∵DE‖AC(已知)∴∠CDF=∠C,∠CFD=∠A(两只线平行,同位角相等)又∵∠C+∠CDF+∠CFD=180°(三角形内角和为180°)∴∠A+∠B+∠C=180°(等式的基本性质)这是初中数学
延长FD和ED∵AC∥FD,∴∠2=∠FDE(两直线平行,内错角相等)又∵AB∥DE,∴∠FDE=∠1(两直线平行,内错角相等)∵∠2=∠FDE,∠1=∠FDE(已证)∴∠1=∠2(等量代换)
∵AB∥DC.∴∠DCE=∠BAF.∵DE⊥AC,BF⊥AC.∴∠DEA=90°=∠BFC.∵AE=CF.∴AE+EF=CF+EF.即AF=CE.∴△CDE≌△ABF(ASA)∴DE=BF.
因为AD=AE所以∠ADE=角AED又因为DE∥BC所以∠B=∠ADE,∠C=∠AED所以∠B=∠C所以AB=AC
证明:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL)∴AF=CE∠BAF=∠DCE∴AB//CD【内错角相等】
∵AB∥DEAC∥DF∴∠ABC=∠DEF∠ACB=∠DFE∵BE=CF∴BE+EC=EC+CF即BC=EF∴△ABC≌△DEF(ASA)∴DE=AB=3
答证明:因为AB平行DE所以∠ABC=∠DEF(两直线平行,同位角相等)因为BE=CF,CE=CE所以BE+CE=CF+CE所以BC=EF(等式的性质)在△ABC和△DEF中(AB=DE(∠ABC=∠
证明:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL)∴AF=CE∠BAF=∠DCE∴AB//CD【内错角相等】
∵DE⊥AC,BF⊥AC,AD=BC,DE=BF∴Rt△ADE全等于Rt△BCF(HL)∴AE=CF∴AE+EF=CF+EF即AF=CE又∠AFB=∠CEDDE=BF∴△AFB全等于△CED(SAS)