证明 两条对角线平分一组对角的四边形是菱形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:15:26
证明 两条对角线平分一组对角的四边形是菱形
九上数学证明题证明:1.正方形的四个角都是直角,四条边都相等2.正方形的两条对角线相等,并且互相垂直平分,每条对角线平分

正方形是一个邻边相等的矩形,矩形是有一个角是直角的平行四边形.1.利用平行线同旁内角,加定义易证四角直角,利用平行四边形对边相等加正方形定义易证四边相等.2.菱形的性质与证明不知道学过没有,学过正方形

一条对角线平分一组对角的四边形是菱形吗

不是,如图,∠1=∠2,∠3=∠4,但不是菱形.

两条对角线分别平分一组对角的四边形是菱形吗

没错.另外,正方形也是菱形一种.没分的?正方形也平分是的.是的yes

证明两条邻边相等且一条对角线平分一组对角的四边形是菱形

已知:AB=AD,∠1=∠2,∠3=∠4求证:ABCD是菱形证明:∵∠1=∠2,∠3=∠4∴AB=CB,AD=CD又∵AB=AD∴AB=BC=CD=DA∴四边形ABCD是菱形.

证明两条邻边相等且一条对角线平分一组对角的四边形是菱形(有已知,求证,证明.

上图满足题意AB=AD,∠1=∠2,∠3=∠4,则四边形ABCD并不是菱形,错哪了.

求证对角线互相垂直且一条对角线平分一组对角的四边形是菱形

角线互相垂直且一条对角线平分一组对角的四边形是菱形不是真命题.四边形ABCD,AB=AD,CB=CD,AB不等于CD,也满足上条件.

一组对角相等,一条对角线被另一条对角线平分的四边形是平行四边形是真命题还是假命题

假命题我给你画个图,举个反例,稍等,百度传图有点慢(筝形)再问:哦哦!非常感谢

证明一个四边形是菱形菱形的判定中“每条对角线平分一组对角的四边形是菱形”怎样证明?(除证明两个三角形全等之外)

设ABCD中,AC平分A得角1和角2AC平分C得角3和角41和3在一侧2和4在一侧角1+角3=角2+角4所以角B=角D对角相等.同理可证得角A=角C所以对角相等是平行四边形.再证便易.

用向量法证明:平行四边形的两条对角线的平分和等于相邻两边的平方和的两倍

AB+AC=ADAB-AC=BC平方相加即可那当然啊短点还觉的不好?

任意四边形一组对边中点连线段与两条对角线有什么关系(证明)

从位置关系来讲,任意四边形一组对边中点连线段与两条对角线必然不平行.从大小关系来讲,任意四边形一组对边中点连线段小于两条对角线之和的一半.再找个第三边的中点,连接三个中点之后,根据中位线定理和三角形的

一组对边_的四边形是平行四边形 两条对角线_的四边形是平行四边形 两组对角分别_的四边形是平行四边形

一组对边平行且相等的四边形是平行四边形两条对角线互相平分的四边形是平行四边形两组对角分别相等的四边形是平行四边形

证明:平行四边形四条边的平方和等于两条对角线之和

证明:如图过A,D两点做BC边的高,垂足分别为E、F则易知△ABE≌△DCF   BE=CF,AE=DF利用勾股定理得BD²=BF²+DF²

1.证明平行四边形对边相等,对角相等,对角线互相平分

因为ABCD是平行四边形,所以AD平行BC,AB平行CD所以角2=角3,角1=角4所以△ABC全等于△CDA所以AD=BC,AB=CD角B=角D,同理可证角A=角C,所以平行四边形对边相等,对角相等对

两条对角线互相垂直平分的四边形是(  )

因为四边形的对角线互相平分,所以四边形是平行四边形,因为四边形的对角线互相垂直,所以平行四边形是菱形.故选B.

两条对角线互相垂直平分的四边形是()

给你解释一下吧当然选A了棱形包括正方形,正方形是特殊的棱形.选B的只能在四边形有一个内角是90°的时候才是正方形.而题目问的是一般情况,而不是特殊情况,只能选A

1.菱形的四条边都 ,对角 ,两条对角线 ,菱形是以对角线为对称轴的 .

1.菱形的四条边都相等,对角相等,两条对角线互相垂直平分,菱形是以对角线为对称轴的轴对称图形.2.只有一组对边平行的的四边形叫做梯形3.两腰相等的梯形叫做等腰梯形4.有一个角是直角的梯形叫做直角梯形

数学题(菱形)1.若一条对角线平分平行四边形的一组对角,且一边长为a时,如图,其他三边长为_______:周长为____

1.a,4a2.2.4(等面积法)3.DE平行ACDF平行BC,CEDF为平行四边形CF=DE,CE=DF.CD平分角ACB,∠DCF=∠DCE因为DE平行ACDF平行BC,CF=DF,CE=DE,C

证明:菱形的两条对角线长度的平方和等于它的四条边长的平方和.

已知:四边形ABCD为菱形ACBD为对角线证明:因为ABCD是菱形,所以AB=BC=CD=DA又因为菱形的对角线互相平分垂直设AC=XBD=YACBD相交于O则三角形ABO为直角三角形,根据勾股定理(

“两条对角线互相平分的四边形是平行四边形”的条件和结论

首先,此题设不必较真,毫无意义,不论在科学角度还是应试角度.如果真的究其本源,我认为老师的意思是“两条对角线互相平分的四边形是平行四边形”,是一个判定方法.也就是在题中证出两对角线互相平分,就能证明是

如何利用四边形内角和是360度证明每条对角线平分一组对角的四边形是菱形?

证明:如图AC,BD为四边形ABCD的两条对角线.它们相交于点O      过O作OE⊥AB于E,作OF⊥BC于F,作OG⊥CD于G,作OH