已知,如图,ce是△abc的角平分线,点d,f分别在ac,bc上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:36:44
已知,如图,ce是△abc的角平分线,点d,f分别在ac,bc上
已知如图,AD是△ABC的中线,在AD及其延长线上截取DE=DF连接CE、SF,试BF与CE的位置关系

是平行关系证明:因为AD是中线,所以CD=BD因为DE=DF,角CDF=角BDE,所以三角形BDE与三角形CDF全等(SAS)所以角DFC=角DEB,角FCD=角EBD所以BF和CE平行

已知:如图,CE是RT△ABC的斜边AB上的高,BG⊥AP.求证:CE²=ED*EP

∵AC⊥BC∴∠ACE+∠BCE=90°∵CE⊥AB∴∠CBE+∠BCE=90°∴∠ACE=∠CBE同理∠EAC=∠ECB∴△ACE∽△CBE∴AE/CE=CE/BE∴CE^2=AE*BE∵BG⊥AP

如图,在△ABC中,已知∠ABC=∠ACB,BD,CE分别是∠ABC,∠ACB的平分线,请说明BD=CE

证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE

已知,如图,CE,BD分别是△ABC边AB,AC的高,CE=BD,求证,点A在线段BC的垂直平分线上

证明:由面积法,△ABC的面积=(1/2)AB*CE=(1/2)AC*BD,因为CE=BD,所以AB=AC,所以A点A在线段BC的垂直平分线上(到线段两端距离相等的点在线段的垂直平分线上)

已知:如图,CE是Rt△ABC的斜边AB上的高,BG⊥AP.求证:CE的平方=ED×EP.1

证明:∵BG⊥AP,CE⊥AB∴∠BAG+∠ABG=90º∠BDE+∠ABG=90º∴∠BAG=∠BDE又∵∠AEP=∠DEB=90º∴⊿AEP∽⊿DEB(AA’)∴AE

已知,如图,在三角形ABC中,AB等于AC,BD、CE分别是三角形ABC的角平分线,BD、CE相交于点G,有几个等腰三角

不连接DE点的话有2个等腰三角形.ABC和GBC连接DE点就有4个等腰三角形.ABC和GBC,ADE,GDE.再问:但是答案上写的是6个为什么呢再答:有些时候答案也不完全可靠,但是如果角ABC=2倍角

如图,已知BD,CE是△ABC的高,P,Q分别在BD和CE的延长线上,且BP=AC,CQ=AB

设BD与CE的交点为O在三角形AOE和三角形COD中,因为BD是三角形ABC的高,所以角CDO=90度;因为CE是三角形ABC的高,所以角BEO=90度;且角BOE=角COD(对顶角)所以,角EBO=

已知,如图CE是三角形ABC的外角

证明:∵CE是∠ACD的平分线∴∠ACE=∠ECD∠ECD是△BCE的外角∴∠ECD=∠E+∠EBC∴∠ECD>∠EBC∴∠ACE>∠EBC即:∠EBC<∠ACE

如图,AD.CE是三角形ABC的角平分线,AD.CE相交于点f.已知

在AC上截取AG,使AG=AE,连结FG,则ΔAGF≌ΔAEF∠A+∠C=180-60=120º,∴(∠A+∠C)/2=60º∴∠AFC=180-60=120º,∴∠EF

如图1,已知,CE是Rt△ABC的斜边AB上的高,点P是CE的延长线上任意一点,BG⊥AP,

证明:(1)∵CE是Rt△ABC的斜边AB上的高,BG⊥AP,∴∠P+∠PAE=90°,∠DBE+∠PAE=90°,∴∠P=∠DBE,又∠AEP=∠DEB=90°,∴△AEP∽△DEB;(2)选图2.

如图,已知AB=AC,角ABC=角ACB,BD和CE是三角形ABC的中线,说明BD=CE

∵BD和CE是三角形ABC的中线∴BE=½AB,CD=½AC∵AB=AC∴BE=CD∵角ABC=角ACB,BC=CB∴⊿BCE≌⊿CBD(SAS)∴BD=CE

已知:如图,在△ABC中,AB=AC,BD、CE是高 求证:BD=CE

证明:△ABD和△ACE中∠ADB=∠AEC∠A=∠AAB=AC△ABD≌△ACE(AAS)BD=CE

如图,BD、CE是△ABC的两条高.

证明:(1)∵∠A=∠A,∠ADB=∠AEC=90°,∴△ABD∽△ACE.(2)∵△ABD∽△ACE,∴ADAB=AEAC,∵∠A=∠A,∴△ADE∽△ABC.

已知:如图,BE是三角形ABC的内角平分线,CE是三角形ABC的外角平分线.求证:角E

因为角E+角EBC+角ECB=180度转换角E+角ABC/2+角ACB+(180度-角ACB)/2=180度故有角E+角ABC/2+角ACB/2=90度即2*角E+角ABC+角ACB=180度又因为角

已知:如图,BD,CE是△ABC的高,且BD=CE.求证:△ABC是等腰三角形.

证明:当以AB为底边,CE为高时,S△ABC为:AB×CE×1/2当以AC为底边,BD为高时,S△ABC为:AC×BD×1/2∵AB×CE×1/2=AC×BD×1/2∵BD=CE∴AB=AC∴△ABC

如图,AD、CE是△ABC的两条高,已知AD=10,CE=9,AB=12.

(1)∵CE=9,AB=12,∴△ABC的面积=12×12×9=54;(2)△ABC的面积=12BC•AD=54,即12BC•10=54,解得BC=545.

如图,AD、CE是△ABC的高,已知AD=10,CE=9,AB=12,求BC的长.

解法一:S三角形ABC=AB*(乘以)CE*1/2(二分之一)=12*9*1/2=54S三角形ABC=BC*AD*1/2=BC*10*1/2=BC*5BC*5=54解得BC=10.8解法二:CE⊥AB

如图,已知AB=AC,BD和CE是三角形ABC的中线,说明BD=CE

证明:AB=AC∠B=∠CBDCE是三角形中线BE=CDBC=BC(公共边)△BCD≌△BCEBD=CE加油!