已知(X 1 2根号x)的展开所有项中第5项的二项式系数最大
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:54:45
由已知,得x1+x2=-3,x1•x2=1,又∵x12+3x1+1=0,即x12=-3x1-1,∴x12+8x2+20=-3x1+8x2+19(设为a),与x1+x2=-3联立,得x1=-a+511,
x1+x2=-2/mx1x2=1/mx1²+x2²=(x1+x2)²-2x1x2=14/m²-2/m=1即m²+2m-4=0m=-1±√5有解则4-4
再答:啧,反了,等等再答: 再答:望采纳
因为根号18-x是二次根式,所以18-x不是完全平方数x为整数所以x可以等于18内除了18,17,14,2,9之外的整数
x2+2x+1=m2即x2+2x+1-m2=0x12-x22=0即(x1+x2)(x1-x2)=0第一种情况x1=x2则△=0,把带有m的△代进去就可以算出答案了第二种情况x1+x2=0此时△>0那x
由△=36-4k≥0得k≤9,∵x12x22-x1-x2=115,x12x22-(x1+x2)=115,k2-6=115,k2=121,解得k=-11,或k=11(不合题意舍去),得x12+x22=(
2x+5要等于一个平方数乘5任意的
韦达定理啊!x1+x2=-5,x1*x2=6再换算即可
由方程有实根,得△≥0,即(k-2)2-4(k2+3k+5)≥0所以3k2+16k+16≤0,所以(3k+4)(k+4)≤0解得-4≤k≤-43.又由x1+x2=k-2,x1•x2=k2+3k+5,得
∵x1,x2是方程mx2+2x+m=0的两个根∴x1+x2=-2/mx1x2=1△=4-4m²≥0,即-1≤m≤1但m≠0∴x1²+x2²=(x1+x2)²-2
方程x^2-x-1=0的两根为x1,x2,∴x1+x2=1,x1x2=-1.∴1/x1^2+1/x2^2=(x1^2+x2^2)/(x1x2)^2=(x1+x2)^2-2x1x2=1+2=3.
因为x1,x2为方程的实根.则有x1+x2=3-t,x1x2=t^2-9.(t-3)^2-4(t^2-9)=0.则有t^2+2t-15=0即-5=t=3.x1^2+x2^2=(x1+x2)^2-2x1
x^(1/2)就是幂函数就如x^2,还展什么再问:函数展开成幂级数和展开成麦克劳林级数是不同的吗?再答:麦克劳林级数实在泰勒级数x=0,的一种特殊形式。幂指数函数不提这个,个人觉得差不多
定义域为-1再问:答案用级数的方式表示是什么我算出来的和课后答案不一样再答:上面就是幂级数的方式呀再问:f(x)每项的通项公式?再答:通项为x^(2n-1)/(2n-1)
∵x1、x2是方程x2-5x-6=0的两个根,∴x1+x2=-ba=5,x1•x2=ca=-6,∴x12+x22=(x1+x2)2-2x1x2=25+12=37.故选A
由方程有实根,得△≥0,即(k-2)2-4(k2+3k+5)≥0⇒3k2+16k+16≤0⇒(3k+4)(k+4)≤0⇒-4≤k≤-43.又由x1+x2=k-2,x1•x2=k2+3k+5,得x12+
展开式中奇数项系数和就是奇数项的二项式系数和,即2^(n-1)=512,解得n=10.则(√x-³√x)^10的展开式的通项是C(n,10)(√x)^(10-n)(³√x)n,考虑
x1=(-3+√5)/2或(-3-√5)/2x2=(-3-√5)/2或(-3+√5)/2x1²=(7-√5)/2或(7+√5)/28x2=-12-4√5或-12+4√5所以x12^+8x2+
∵关于x的方程x2-px+q=0的两根分别是x1、x2,∴x1+x2=p,x1•x2=q,∴x12+x22=(x1+x2)2-2x1•x2=p2-2q=7,即p2-2q=7,①1x1+1x2=x1+x
能的.当前面矩阵的行列式不等于0时,一定有X11=X12=0再问:矩阵行列式为0,求解X12和X21的比值?再答:如下图帮到你的话,请评价我的回答为满意答案。谢谢!再问:另外原式是不是两个矩阵相乘等于