川赛已知正方形ABCD中BE=BP,cE BD,BE与cD交于F
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:59:30
你的解法是正确的,第二问只有一个解.
过A做AO垂直于BD于O,过E做EG垂直于BD于G所以EG=AO=BD/2.由BD=BE,所以EG=BE/2所以,可知在直角三角形BEG中,角EBD=30度所以在等腰三角形BED中,角BED=角BDE
证明:在CB的延长线上取点G,使BG=DF,连接AG∵正方形ABCD∴AB=AD,∠D=∠ABG=∠BAD=90∴∠BAE+∠DAF=∠BAD-∠EAF∵∠EAF=45∴∠BAE+∠DAF=45∵BG
(1)∵ABCD是正方形∴∠B=∠D=90°AB=AD又∵AF=AE∴△ABE全等于△ADF∴BE=DF(2)∵AC是ABCD的对角线∴∠DCA=∠BCA∵BE=DF∴FC=EC又∵DC=DC∴△DC
延长FD至H,使DH=BE,连接AH在△ABE与△ADE中AB=AD∠ABE=∠ADHBE=DH∴△ABE全等于△ADH(SAS)∴∠BAE=∠DAH,AH=AE∵∠EAF=45°∴∠FAH=∠BAE
题目多了,按规范写好麻烦,给出方法,自己做.1.连接BD,过A作AP平行于BD交EB延长线于P,在直角三角形APE中AP=(1/2)BD=1/2AC=1/2AE,角AEP为30度.》》角EAC=30度
角B=角C,同时CD/BE=CE/BF所以△DCE∽△EBF可知角CED=角BFE=90度-角BEF即角CED+角BEF=90度所以∠FED=90°
明确告诉你,这是个错题.证明很简单:假设E在BC中点,那么F与D重合,此时有AE=EF,但BE不等于DF.
在△DAF和△ABE中AD=AB∠DAF=∠ABEAF=BE所以△DAF全等于△ABE所以∠ADF=∠BAE,BE=AF因为∠DAH+∠BAE=90°所以∠ADF+∠DAH=90°即∠DHA=90°C
无图可能有四种情况:1、E在BC上,F在CD上∵ABCD是正方形∴AB=BC=AD=CD=4,∠D=∠B=90°∠BAC=∠DAC=45°EC=CF=BC-BE=4-1=3∵BE=DF∴△ADF≌△A
用勾股定理和逆定理:设AB=4,则BE=EC=2,BF=1,AF=3用勾股定理可求:EF=√5,DE=√20,DF=5故EF的平方+DE的平方=DF的平方∴角FED=90度
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
因为是正方形所以∠DCA=∠BCA=45°,BC=DC在三角形DCE和三角形BCE中,CE是公共边所以ΔDCE≌ΔBCE(SAS)所以BE=DE
解①:设AE=a,则AB=2a,根据勾股定理:AE²+AB²=BE²a²+(2a)²=6²5a²=36a²=36/5a=
证明:在CD的延长线上取点G,使DG=BE,连接AG∵正方形ABCD∴AB=AD,∠BAD=∠ABC=∠ADG=90∵DG=BE∴△ABE≌△ADG(SAS)∴AG=AE,∠DAG=∠BAE∵∠EAF
过点E作EG⊥AC于G,连结BD,∵EG⊥AC,BD⊥AC,∴EG‖BD.又AC‖BE,∴四边形EGOB是矩形,∴EG=BO.∵BD=AC,∴,∴∠EAG=30°.∵△ACE是等腰三角形,∴.∵AC是
证明:延长CB,使BG=DF,连接AG因为四边形ABCD是正方形所以角BAD=角ABG=角D=90度AB=AD所以三角形ABG和三角形ADF全等(SAS)所以角GAB=角FAD因为角BAD=角BAF+
是这个图吧:题目该为:已知,如图,ABCD是正方形,∠FAD=∠FAE,求证BE+DF=AE将⊿ADF顺时针旋转90°.则D、B重合.旋转后F点改作G点.GE=BG+BE=BE+DF∠GAE+∠EAF
链接EN,设EN=x,则EN=AN=x,BN=12-x因为三角形ENB是直角三角形,所以5^2+(12-x)^2=x^2x=169/24由于AE是直角三角形ABE斜边,算出长度等于13,所以ON(O是
(1)证明:延长FD到点G,使DG=BE,连接点A与G在△ABE和△ADG中BE=DG∠ABE=∠ADG=90°AB=AD∴△ABE≌△ADG(SAS)∴∠BAE=∠DAG∴AE=AG∵BE+DF=E