1-XY/X^2+Y^2极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:09:27
1-XY/X^2+Y^2极限
求二重极限lim[xy/(1+x^2+y^2)],x→0,y→0.求详细步骤

lim[xy/(1+x^2+y^2)],x→0,y→0令x=pcosa,y=psina,p->0所以原式=lim(p->0)p²cosasina/(1+p²)=0

多元函数的极限问题.x,y分别趋向于0.求分子xy分母根号下2-e^xy然后根号外减1的极限.

分子、分母同乘以√(2-e^xy)+1分母变成1-e^xy分子变成xy(√(2-e^xy)+1)再问:然后呢?还是不知道结果呀,麻烦大哥说详细点咯再答:令1-e^xy=-txy=ln(t+1)x,y分

求下列各极限 lim(x,y)→(0,1) (2-xy)/(x^2+2y)

f(x,y)=(2-xy)/(x²+2y),这是一个初等函数,初等函数在定义域内均连续,而(0,1)显然是定义域内的点,因此连续,因此可直接算函数值就行了.lim(x,y)→(0,1)(2-

证明当(x,y)趋向于(0,0)时,f(x,y)=(1-cos(x^2+y))/(x+y)xy 的极限不存在, 谢谢~

沿y=x趋于原点时,极限为lim(1-cos(x^2+x))/2x^3趋于无穷再问:这样回答老师打了问号,是不是最后的极限不能出现x呀?再答:不是不能出现x,你可以写得再详细一点,用洛必达法则或等价替

用函数极限的定义证明:lim(x,y)-(2,1)(x^2+xy+y^2)=7

直接带入就行了……函数f(x,y)在(2,1)处是连续的,所以极限就等于该处的函数值

多元函数求极限两题1 (x+y)/x^2-xy+y^2 xy趋向正无穷2 (绝对值x+绝对值y)/x^2+y^2 xy趋

1.∵x²+y²≥2|xy|∴0≤|(x+y)/(x²+y²-xy)|=|x+y|/|x²+y²-xy|≤|x+y|/(x²+y&

求极限lim x→0 y→0 2xy/根号下1+xy 然后-1 {不在根号里}

limx→0y→02xy/根号下1+xy然后-1=limx→0y→02xy[√(1+xy)+1]/[√(1+xy)-1][√(1+xy)+1]=limx→0y→02xy[√(1+xy)+1]/xy=l

数学极限计算lim(x,y)→(0,0) xy/ [√(2-e^xy)-1]= lim(x,y)→(0,0) -xy/(

利用幂级数在点 (0,0) 的展开式:e^xy=1+xy+x²y²/2!+x³y³/3!+.略去二次项及更高次项无穷小,得 e^x

lim[sin(xy)/xy],x趋向2,y趋向0,求极限

令u=xy,lim_{u->0){sin(u)/u}=1.

用定义法证明二重极限lim(√(xy+1)-1)/xy=1/2 x,y都趋于0

令u=xy,则原式=lim(√(u+1)-1)/u=lim((u+1)-1)/[u·(√(u+1)+1)]=limu/[u·(√(u+1)+1)]=lim1/(√(u+1)+1)=1/2

求极限lim(x→1 y→2) (x²+y²)/xy

这个式子在(1,2)连续所以极限=(1+4)/2=5/2再问:可以写写计算的过程吗。再答:就是这个啊因为连续,所以可以直接代入

求极限((1-根号下x^2+1)/x^3y^2)sin(xy),当x,y趋于0时

题目抄的有点问题.按照x^3y^2在分母来计算.分子1-根号(x^2+1)=-x^2/(1+根号(x^2+1))等价于-x^2/2.sin(xy)等价于xy,代入得原极限=lim-x^2*(xy)/(

lim(xy/(x^2+y^2))^x^2 x,y趋近无穷 求极限

极限不存在吧x=ky时(k大于0)极限值与x=y^2时极限值不相等所以极限不存在对于多元函数要使得极限存在必须是从各个方向趋近极限值都一样.再问:答案极限为零主要是式子外面还有个X^2是那个式子的指数

求极限lim(x,y)→(+∞,+∞) (xy/(x^2+y^2))^x^2

若x+无穷=y+无穷[(x^2)/(2x^2)]^(x^2)=(1/2)^(x^2)=0

求极限:1)x趋于0,y趋于1时,lim(1-xy)/(x^2+y^2)

第一题极限等于1第二题极限为1/2第三题为1第一题方法x->0y->1直接代入即可第二题方法1-cos根号(x^2+y^2)等价于(x^2+y^2)/2所以除以x^2+y^2后等于1/2和x,y没关系

求极限lim(x,y)→(+∞,+∞) [(xy)/(x^2+y^2)]^xy.

求极限lim(x,y)→(+∞,+∞)[(xy)/(x²+y²)]^(xy)[(xy)/(x+y)²]^(xy)≦[(xy)/(x²+y²)]^(xy

(xy/(x^2+y^2))^x当x,y都趋于正无穷时极限是多少?

极限不存在.上下同时除以x^2,令t=y/x,则原式=t/(1+t^2).由于t可以是任意非负数,所以极限不存在.

求极限lim(xy)^2/(x^2+y^2)^2,(x,y)趋于(0,0)

lim[x=y,x-->0](xy)^2/(x^2+y^2)^2=lim[x=y,x-->0]x^4/(4x^4)=1/4lim[y=2x,x-->0](xy)^2/(x^2+y^2)^2=lim[y

求二元函数极限:(x,y)趋近于(2,-1/2)时lim(2+xy)^(1/(y+xy^2))

取对数,得ln(2+xy)/(y+xy^2).(x,y)→(2,-1/2),所以xy→-1,所以ln(2+xy)是无穷小,等价于1+xy.所以,limln(2+xy)/(y+xy^2)=lim(1+x