1 x^2 1 0到无穷的积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:53:20
1 x^2 1 0到无穷的积分
计算积分(x^2/x^4+x^2+1)dx 积分区间是负无穷到正无穷

你学过复变函数吗?最好的办法是利用复变函数中的留数来计算.积分的围线选实轴上[-r,r]的线段和以r为半径,0

积分∫AX/(1+X)^4=1,x的范围是0到正无穷,求A的表达式

先计算积分:∫[0→+∞]x/(1+x)^4dx=-(1/3)∫[0→+∞]xd[1/(1+x)³]分部积分=-(1/3)x/(1+x)³+(1/3)∫[0→+∞]1/(1+x)&

计算反常积分f0到正无穷x/(1+x)^3 dx

我算算再问:好的,谢了再答:做出来了,给你传个图再问:好的,,呵呵再答:再问:线性微分方程y^(4)-y=0通解为再问:这个呢再答:y^4-y=0的通解?再问:对啊再问:帮帮忙再答:你题没写错吧?再问

∫(x^2)exp(-x^2)dx的积分怎么算啊,从负无穷到正无穷

^^你知道正态分布吧f(x)=[1/√(2pi)]*exp(-x^2)EX=0DX=1EX^2=DX+(EX)^2=1=∫x^2f(x)dx从负无穷到正无穷所以∫x^2*[1/√(2pi)]*exp(

求在0到正无穷的范围内1/(4+x^2)的广义积分

∫[0,+∝]dx/(4+x^2)=(1/2)arctan(x/2)|[0,+∝]=(1/2)(π/2)=π/4再问:能不能详细的写一下求1/(4+x^2)的步骤。。。。。再答:∫dx/(4+x^2)

怎么求E的负X平方次方在负无穷到正无穷间的广义积分

I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy转化成极坐标=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1/2)e^

求∫x/(1+x^2)dx在负无穷到正无穷上的定积分

反常积分,发散再问:谢谢!!!那这个要怎么证它发散啊???再答:原函数是(1/2)ln(1+x^2),在+∞的值是﹢∞,不是有限值,故广义积分发散。

∫dx/1+x² 求定积分 区间是负无穷到正无穷.

反常积分,I=arctanx|(-∞,+∞)=π/2-(-π/2)=π

反常积分积分 0到正无穷 (sinX/X)^2

由分部积分将原积分化为2sinxcosx/x从0到无穷积分上式等于sin2x/x由变量替换可化为sinx/x从0到正无穷积分该积分为Dirichlet积分其值为pai/2,pai为圆周率至于Diric

欧拉积分∫(0到正无穷)x^(a-1)*e^(-x^2)dx的收敛域为

a>0.a>=1的时候,要看x趋于无穷的情况,此时x^(a-1)比起e^x,都是无穷小,而e^x*e^(-x^2)显然是收敛的.a再问:但是答案是a>1/2tangram_guid_135799679

求无穷限的广义积分(0到正无穷)1/(x^2+1)^2/3 dx

∫e^(-px)*sin(ux)dx=1/(-p)∫sin(ux)de^(-px)=1/(-p移项便会求的积分∫e^(-px)*sin(ux)dx=∫sin(ux)d[(-1/p)e

积分:1/(1+x^4) 从0到正无穷定积分 求较为细致的答案

∫dx/(1+x^4)=(1/2)[∫(1+x²)dx/(1+x^4)+∫(1-x²)dx/(1+x^4)].分子分母同除于x²=(1/2){∫[(1/x²)+

留数积分(X^2+2)/X^4+5X+1用留数求该式的积分上下限负无穷到正无穷(X^2+2)/X^4+5x^2+1

因为有些符号比较难打,所以我把答案写到百度空间里去了,可以点击下面的链接我还从网上找到了一篇留数计算实积分的文章,链接如下

大学数学题,1.求cosxsin5x积分,2求.x^/(x^3+1)^2 负无穷到正无穷的广义积分

第1题.利用分部积分公式,∫cosxsin5xdx=sinxsin5x-∫(sin5x)'sinxdx=sinxsin5x-∫5conxsinxdx=sinxsin5x-5∫sinxd(sinx)=s

求1到正无穷上的反常积分dx/x^*2(1+x)

若为∫(1.+∞)(1+x)/x^2dx=∫(1.+∞)(1/x^2+1/x)dx=(-1/x+ln|x|)|(1.+∞))=+∞若为∫(1.+∞)1/[x^2*(1+x)]dx待定系数法:设1/[x

limx趋向于正无穷,1/x积分号下由0到x |sint|dt

这里用到了一个结论:f(x)是周期为T的函数,则x趋于正无穷是,lim积分(从0到x)f(t)dt/x=积分(从0到T)f(t)dt/T.本题中,T=pi,积分(从0到pi)|sint|dt=2.因此

证明x/(1+x^6*sin^2x)的积分在0到正无穷上收敛

再问:这是哪本教材啊?再答:谢惠民的《数学分析习题课讲义》

∫x^(1/2)exp(-x)dx在0到正无穷的积分,

用分部积分化为一个特殊的定积分可以求出其值.