1 x^2 1 0到无穷的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:53:20
你学过复变函数吗?最好的办法是利用复变函数中的留数来计算.积分的围线选实轴上[-r,r]的线段和以r为半径,0
先计算积分:∫[0→+∞]x/(1+x)^4dx=-(1/3)∫[0→+∞]xd[1/(1+x)³]分部积分=-(1/3)x/(1+x)³+(1/3)∫[0→+∞]1/(1+x)&
我算算再问:好的,谢了再答:做出来了,给你传个图再问:好的,,呵呵再答:再问:线性微分方程y^(4)-y=0通解为再问:这个呢再答:y^4-y=0的通解?再问:对啊再问:帮帮忙再答:你题没写错吧?再问
^^你知道正态分布吧f(x)=[1/√(2pi)]*exp(-x^2)EX=0DX=1EX^2=DX+(EX)^2=1=∫x^2f(x)dx从负无穷到正无穷所以∫x^2*[1/√(2pi)]*exp(
∫[0,+∝]dx/(4+x^2)=(1/2)arctan(x/2)|[0,+∝]=(1/2)(π/2)=π/4再问:能不能详细的写一下求1/(4+x^2)的步骤。。。。。再答:∫dx/(4+x^2)
I=[∫e^(-x^2)dx]*[∫e^(-y^2)dy]=∫∫e^(-x^2-y^2)dxdy转化成极坐标=[∫(0-2π)da][∫(0-+无穷)e^(-p^2)pdp]=2π*[(-1/2)e^
反常积分,发散再问:谢谢!!!那这个要怎么证它发散啊???再答:原函数是(1/2)ln(1+x^2),在+∞的值是﹢∞,不是有限值,故广义积分发散。
反常积分,I=arctanx|(-∞,+∞)=π/2-(-π/2)=π
由分部积分将原积分化为2sinxcosx/x从0到无穷积分上式等于sin2x/x由变量替换可化为sinx/x从0到正无穷积分该积分为Dirichlet积分其值为pai/2,pai为圆周率至于Diric
a>0.a>=1的时候,要看x趋于无穷的情况,此时x^(a-1)比起e^x,都是无穷小,而e^x*e^(-x^2)显然是收敛的.a再问:但是答案是a>1/2tangram_guid_135799679
∫e^(-px)*sin(ux)dx=1/(-p)∫sin(ux)de^(-px)=1/(-p移项便会求的积分∫e^(-px)*sin(ux)dx=∫sin(ux)d[(-1/p)e
∫dx/(1+x^4)=(1/2)[∫(1+x²)dx/(1+x^4)+∫(1-x²)dx/(1+x^4)].分子分母同除于x²=(1/2){∫[(1/x²)+
求原函数.再问:求详解
因为有些符号比较难打,所以我把答案写到百度空间里去了,可以点击下面的链接我还从网上找到了一篇留数计算实积分的文章,链接如下
第1题.利用分部积分公式,∫cosxsin5xdx=sinxsin5x-∫(sin5x)'sinxdx=sinxsin5x-∫5conxsinxdx=sinxsin5x-5∫sinxd(sinx)=s
若为∫(1.+∞)(1+x)/x^2dx=∫(1.+∞)(1/x^2+1/x)dx=(-1/x+ln|x|)|(1.+∞))=+∞若为∫(1.+∞)1/[x^2*(1+x)]dx待定系数法:设1/[x
这里用到了一个结论:f(x)是周期为T的函数,则x趋于正无穷是,lim积分(从0到x)f(t)dt/x=积分(从0到T)f(t)dt/T.本题中,T=pi,积分(从0到pi)|sint|dt=2.因此
再问:这是哪本教材啊?再答:谢惠民的《数学分析习题课讲义》
用分部积分化为一个特殊的定积分可以求出其值.