实对称矩阵A^2=o
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:43:39
这个结论貌似是不正确的很容易可以举出反例:A=[0-1;10]A满足(A^T)A=A(A^T)=单位矩阵,然而A不是对称矩阵.这个题应该是少了什么约束条件吧?
实对称矩阵A为正定矩阵的充分必要条件是A的所以特征值全是正的.(A-E)(A-2E)(A-3E)=O所以A的特征值满足方程(λ-1)(λ-2)(λ-3)=0,解得λ=1,2,3.即A的所以特征值全是正
【1】令P,Lambda分别为特征矩阵和特征值矩阵,则.【2】因为P是个正交矩阵,所以PP^-1是个常数,
用基本的矩阵知识就行.使用矩阵乘积的定义.设A是n阶方阵,第i行j列元素是aij.A的转置记为A^T,则0=A^2=A×A^T所以A×A^T的主对角线元素(a11)^2+(a12)^2+.+(a1n)
A为实对称矩阵,则A~ΛΛ=P^(-1)AP,A=PΛP^(-1)B=A^2-2A-E=PΛ^2P^(-1)-2PΛP^(-1)-PEP^(-1)=P(Λ^2-2Λ-E)P^(-1)P^(-1)BP=
(A^2)^T=(A^T)^2=(-A)^2=A^2故A^2是对称的.
设矩阵A的特征值为λ那么|A-λE|=1-λ221-λ=(1-λ)²-4=λ²-2λ-3=0解得λ=3或-1当λ=3时,A-3E=-222-2第2行加上第1行,第1行除以-21-1
线性代数考虑的范围是实数正定的概念来源于二次型故一般说来正定是实对称矩阵(线性代数范围)(ABC)^T=C^TB^TA^T
做特征值分解就好了.求A的特征值,即det(A-λI)=0,可得λ=5,2,-1所以,A-5I=-4-20-2-3-20-2-2所以,特征向量为c(1,-2,2),取长度为1的,得(1/3,-2/3,
由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕
A秩为3,则,x为A特征值对角矩阵diag(x1,x2,x3,0)A^2+A=0(A+E)A=0r(A+E)+R(A)《4r(A+E)《1即r(A+E)=1A化为对角矩阵diag(x1,x2,x3,0
设B=P‘AP那么B‘=(P‘AP)‘=(AP)‘P=P‘A‘P因为A‘=A,所以B‘=P‘AP=B,所以P‘AP也是对称矩阵
证明:因为A是实对称矩阵所以A相似于对角矩阵diag(λ1,λ2,...,λn)其中λi是A的特征值.因为相似矩阵有相同的秩,故r(A)=λ1,λ2,...,λn中非零数的个数.由A是实对称矩阵知A^
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
因为A为反对称矩阵则A=-A^T(A^2)^T=(A^T)2=(-A)(-A)=A^2是实对称矩阵再问:a是反对称矩阵b实对称矩阵证明:(1)ab-ba是对称矩阵?(2)ab是反对称矩阵的充分必要条件
设a是A的特征值则a^2+2a是A^2+2A的特征值(这是个定理)因为A^2+2A=0,且零矩阵的特征值只能是0所以a^2+2a=0即a(a+2)=0所以a=0或a=-2.即A的特征值只能是0或-2.
做谱分解A=QΛQ^T然后取对角阵D使得D^3=ΛB=QDQ^T就满足条件再问:什么是谱分解啊?再问:什么是谱分解啊?再问:什么是谱分解啊?
(T^-1AT)的转置=T的转置*A的转置*T^-1的转置因为T是正交阵,所以T的转置=T-1因为A是实对称阵,所以A的转置=A则(T^-1AT)的转置=T的转置*A的转置*T^-1的转置=T^-1*
一楼是利用实对称矩阵是正规矩阵,所以可以对角化.不过这个是相似标准型的内容,开学到现在可能还没学到这部分内容吧.其实没那么麻烦.你看看A*A的对角线是什么.由于对称性,第一个对角线元素就是a11^2+
A^2-5A=O,可以得出λ^2-5λ=O(这个不懂的话再问).所以λ1=0,λ2=5.因为R(A)=2,根据A实对称,可以对角化,且对角阵的对角元是特征值.对角化是初等变化,不改变秩.所以对角阵的秩