1 2(e^x-e^-x)展开成幂级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:54:12
e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+……e^x-1=x+x^2/2!+x^3/3!+……+x^n/n!+……(e^x-1)/x=1+x/2+x^2/3!+……+x^(n-1
利用e^x的幂级数展开:e^x=1+x+x^2/2!+x^3/3!+x^4/4!+...+x^n/n!+...所以(e^x-1)/x=x/2!+x^2/3!+...+x^(n-1)/n!+...两边对
e的x次方你会展开么把里面的所有x换成(2x)再把这个2弄出括号就行了
按泰勒级数展开e^x=1+x+x^2/2+...+(x^n)/(n!)(n从0到无穷大)∴e^x-1=x+x^2/2+x^3/6+...+(x^n)/(n!)(n从0到无穷大)∴(e^x-1)/x=1
f(x)=x^2*(x^2+1/2(x^2)^2+1/3!(x^2)^3+1/4!(x^2)^4+.)=x^4+1/2x^6+1/6x^8+1/24x^10+.收敛域(-∞,+∞)
函数展开成幂级数的方法是:1)求出f(x)的各阶导函数,并且它们在x=0处的各阶导数值,如果某一阶导数不存在,则函数无法展开成幂级数;2)写出幂级数f(0)+f'(0)x+[f''(0)/2!]x^2
由公式可以知道E(X^2)=∫x^2*f(x)dx其中f(x)是X的分布函数
0?再问:哦
已知幂级数 e^x=∑(n>=0)(x^n)/n!,x∈R,因此f(x)=(1+x^2)*(e^x) =(1+x^2)*∑(n>=0)(x^n)/n! =∑(n>=0)(x^n)/n!+(x
你说的是shx吧,把e^x和e^-x分别展开相加即可e^x=1+x+x^2/2!+x^3/3!+...+x^n/n!+...e^-x=1-x+x^2/2!-x^3/3!+...+(-1)^nx^n/n
将e^x的麦克劳林公式中的x换成2-x即可.
因为e^(3x-3)=1+(3x-3)+(1/2!)(3x-3)^2+(1/3!)(3x-3)^3+...+(1/n!)(3x-3)^n+...=1+3(x-1)+(3^2/2!)(x-1)^2+(3
如果你有足够耐心,多算几个阶次的导数,代入计算,看看就明白了!前提是别算错!我自己以前把类似展开式算到12阶,只是为了找直观感受!因为前面0比较多,算出十几项,最终排下来也只有三四项.
根据六大常用幂级数的展开式:f(x)=e^x=x+x^2/2!+x^3/3!+...+x^n/n!
令y=e^(x^(e^x))则lny=x^(e^x)ln(lny)=e^x*lnx再对x求导,y'/(ylny)=e^x*(1/x+lnx)y'=ylny*e^x*(1/x+lnx)代入y,y'=【e
复合函数求导首先要把复合函数分解成简单函数,然后分别求导相乘.你的题中e^x是简单函数,但e^(-x)就不是简单函数,它由函数y=e^u和函数u=-x复合而成,所以这是的求导不能直接用你记的公式e^的
先把e^x展开成幂级数e^x=1+x+x^2/2!+x^3/3!+x^4/4!+...+x^n/n!+...(n=0,1,2,…)减一e^x-1=x+x^2/2!+x^3/3!+x^4/4!+...+
第一个:e^x=Σx^n/n!,所以(x+2)e^x=(x+2)Σx^n/n!=Σx^(n+1)/n!+2Σx^n/n!=Σ(n+2)x^n/n!.式中的Σ是从0到+∞求和.第二个:1/(2-x)
e^x=1+x+x^2/2!+x^3/3!+.x^n/n!+.|x|再问:收敛区域是用比值审敛法直接求的么?再答:e^x的收敛域|x|