如果方阵满足A2-5A 6I=0怎么证明A可以对角化

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:21:29
如果方阵满足A2-5A 6I=0怎么证明A可以对角化
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.

∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.

设方阵A满足A2-2A-E=0,证明A-2E可逆,并求(A-2E)-1次方

解:因为A^2-2A-E=0所以A(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A.

麻烦老师解答了,已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维向量,如果(0,1,0,1)是

A*x=0的基础解系含4-r(A*)=3个向量A的列向量是A*x=0的解r(A)=3,即A的列向量的极大无关组含3个向量(线性无关)所以A的列向量的极大无关组恰好就是A*x=0的基础解系a1,a3,a

设3阶方阵A属于特征值-1和1的特征向量是a1 a2 向量a3满足Aa1=a2+a3 证明a1 a2 a3

答案见补充图片再问:怎么看补充图片啊再答:在上传中,百度抽风,要等一会

设B是可逆矩阵,A是与B同阶的方阵才,且满足A2+AB+B2=0{A平方B平方},证明A和B都是可逆矩阵.

A^2+AB+B^2=0-A^2-AB=B^2A(-A-B)=B^2因为B可逆,所以:A(-A-B)B^(-1)B^(-1)=B^2B^(-1)B^(-1)=E,E为单位阵.所以A有逆(-A-B)B^

已知n阶方阵A满足A2+2A-3E=0,证明A可逆,并写出A的逆距阵的表达式

做法是这样的:A^2+2A=3E再因式分解A*(A+2E)/3=E所以A的逆矩阵是(A+2E)/3

若方阵A满足A2+A-7E=0,求证A+3E可逆,并求其逆

A2+A-7E=0,(A+3E)(A-2E)=E所以由书上推论,得A+3E可逆,且A+3E的逆矩阵(A+3E)^(-1)=A-2E.

设n阶方阵A满足A2-5A+5E=O,证明矩阵A-2E可逆,并求其逆矩阵

A²-5A+6E=E(A-2E)(A-3E)=E所以A-2E可逆其逆矩阵为A-3E再问:(A-2E)(A-3E)=A²-5AE+6E^2。不等于A²-5A+6E=E再答:

设n阶方阵A满足A2-5A+5E=O,证明矩阵A-2E可逆,并求其逆矩阵.

A2-5A+5E=A2-5A+6E-E=(A-2E)(A-3E)-E=O(A-2E)(A-3E)=E矩阵A-2E可逆,其逆矩阵=A-3E

设方阵A满足A2-A-2E=0,证明:A和A+2E均可逆,并求A和A+2E的逆矩阵.

证明:∵方阵A满足A2-A-2E=0,∴A2-A=2E,∴A×A−E2=E所以A可逆,逆矩阵为A−E2,∵方阵A满足A2-A-2E=0,∴A2=A+2E,由A可逆知A2可逆,所以A+2E可逆,逆矩阵为

设n阶方阵A,满足A2-3A-3E=0,证明A-E可逆,并求(A-E)-1

证:由A2-3A-3E=0,得(A-E)(A-2E)=5E(A-E)[(A-2E)/5]=E由定义,得(A-E)可逆,且(A-E)-1=(A-2E)/5再问:再答:就是这个题目啊。再问:哦哦,谢谢

已知方阵A满足A*A-A-2E=0,判断A,E-A是否可逆?如果可逆,求它们的逆矩阵.证明题

A*A-A-2E=0于是A*(A-E)=2EA*(A-E)/2=E(E-A)*(-A)/2=E则A,E-A都可逆,且A的逆矩阵是(A-E)/2,E-A的逆矩阵是-A/2

设方阵A满足A2-A-2I=0,证明A和A+2I都可逆,并求A-1和(A+2I)-1.

因为A^2-A-21=0A(A-1)=21|A|*|A-1|=21|A|不等于0所以,A可逆而A^2=A+21|A+21|=|A|2不等于0,所以,A+21可逆A(A-1)=21A^-1=(A-1)/

已知实数a,b满足方程(a2+b2+5)(a2+b2-5)=0,则a2+b2=______

利用平方差公式,设x=a2+b2>0则有:(x+5)(x-5)=0x2-25=0x2=25x=5所以a2+b2=5

已知4阶方阵A=(a1,a2,a3,a4)如果(0,1,0,1)是线性方程组的解,求A*x=0的通解

由于基础解系是一个向量,因此A的秩为4-1=3,故A*的秩是1.再由A*A=det(A)E=0知A的列向量是A*x=0的解,且由于A的秩是3,故A的列向量的极大无关组恰好就是A*x=0的基础解系.再由

设方阵A满足A2(平方)-3A-2E=0,求(A-E)(-1次方)=?

A^2-3A+2E=(A-E)(A-2E)=4E, 由逆矩阵的定义有:A-E=1/4(A-2E)

设n阶方阵A满足A2-A-7E=0,证明A和A-3E可逆

由A^2-A-7E=0得:A(A-1)=7E故A(A-1)的行列式为7而不为0,假如A是不可逆矩阵,则A的行列式为0那么A(A-1)的行列式就为0矛盾,所以A可逆又原式可变为(A+2E)(A-3E)=

如果2006个整数a1,a2,…a2006,满足下列条件:a1=0,|a2|=|a1+2|,|a3|=|a2+2|,…,

可以把2006个数分为502个小组(a1,a2,a3,a4)(a5,a6,a7,a8)…(a2001,a2002,a2003,a2004)(a2005,a2006),第一组,取a1=0,a2=2,a3

线性代数证明题!如果n阶实方阵满足A^2-3A+2E=0,则R(A-E)+R(A-2E)=n

用特征值就可以了(A-E)(A-2E)=0所以A的特征值m满足(m-1)(m-2)=0即m=1或2.m总的重数=n设1是A的k重特征值,则2是n-k重A-E的特征值=m-1.所以0是A-E的k重特征值