如果抛物线经过原点c等于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:23:58
如果抛物线经过原点c等于0
如图已知抛物线y=ax平方+bx+c经过原点和点(-2,0),则2a-3b____0(填大于 小于 等于)

即对称轴是x=(-2+0)/2=-1所以-b/2a=-1b=-2a开口向下所以a0所以2a-3

抛物线经过原点说明什么?

y=ax²+bx+c过原点则x=0,y=0所以0=0+0+cc=0所以抛物线经过原点说明常数项为0

二次函数y=ax²+bx+c的图像经过原点和(-1,0)形状与抛物线y=-½x²-2x+3

已知二次函数y=ax²+bx+c的图像经过原点和(-1,0)且形状与抛物线y=-½x²-2x+3相同,经过原点即f(0)=c=0过点(-1,0)所以f(-1)=a-b=0

已知抛物线C的顶点在坐标原点,焦点F(3,0),若斜线K=1的直线L经过抛物线的焦点F(3,0),且与抛物线C交于A.B

焦点F(3,0),则有方程是y^2=12x.准线方程是x=-3直线L的方程是y=x-3代入到y^2=12x:x^2-6x+9=12xx^2-18x+9=0x1+x2=18即AB中点的横坐标是xo=(x

使平移后的抛物线经过原点

平移后还是一个抛物线而这个新的抛物线过原点即x=0时y=0

如果二次函数y=-3x平方-x+m-1的图像经过原点,那么m= 如果抛物线y=x平方-8x+c的顶点在x轴上,那么c=

第一个图象函数经过原点,就是X、Y分别为0,代入函数:m=1第二个图象顶点在X轴上说明函数图象与X轴只有一个交点,则△=0,所以(-8)平方-4c=0,所以c=16

已知,如图,抛物线y=ax^2+bx+c经过原点(0,0)和A(1,-3),B(-1,5)三点

1)因为过原点,所以C=0,又因为过A(1,-3),B(-1,5),得出解析式y=x^2-4x2)C点坐标(4,0),所以⊙M半径为2,因为MD^2+ED^2=OM^2+OE^2,所以ED=OE,四边

如图,抛物线y=ax平方+bx+c(a不等于0)经过坐标原点和点(-2,0),则2a-3b大于,小于或等于0?

抛物线y=ax平方+bx+c(a不等于0)经过坐标原点和点(-2,0)C=0,b=2a2a-3b=-4aa>0时,2a-3b<0a<0时,2a-3b>0

已知平面直角坐标系中,抛物线y=x²+bx+c经过原点和点a(4,0)

1、由抛物线经过原点跟(4,0),代入y=x2+bx+c得到c=0,b=-4,所以抛物线表达式:y=x2-4x.2、由oape面积为20得到p(m,n)中n=20/oa=5,代入抛物线表达式得到m=5

已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,-6)和原点.

(1)代入三点得25a+5b+c=036a+6b+c=-6c=0解得a=-1,b=5,c=0所以抛物线的函数关系式为y=-x^2+5x(2)C点在抛物线上,所以-1×2^2+5×2=m即m=6因为B(

已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,-6)和原点. (1)求抛物线的函数关系式;

设抛物线方程为:y=ax²+bx+c,因为过三点,分别代入,则有0=25a+5b+c,-6=36a+6b+c,0=c,则有a=-1,b=5,c=0,则抛物线方程为:y=-x²+5x

抛物线y=ax方+bx+c(a≠0)图像经过原点,则

抛物线y=ax方+bx+c(a≠0)图像经过原点c=0对称轴x=-b/2ay=ax方+bx=a(x+b/2a)²-b²/4a²顶点坐标(-b/2a,-b²/4a

已知抛物线y=ax^2+bx+c经过点A(5,0)(6,-6)和原点.

(1)代入三点得25a+5b+c=036a+6b+c=-6c=0解得a=-1,b=5,c=0所以抛物线的函数关系式为y=-x^2+5x(2)C点在抛物线上,所以-1×2^2+5×2=m即m=6因为B(

已知抛物线y=ax^2+bx+c经过原点和第一,二,三象限,那么

过原点x=0,y=0所以0+0+c=0c=0若开口向下,则肯定要经过第四象限所以开口向上a>0过第三象限则顶点在第三象限所以对称轴x=-b/2a0,所以b>0又,开口向上,过第三象限所以和x轴有两个交

如图已知抛物线经过A(-2,0)B(-3,3)及原点O,顶点为C

1.设解析式为y=ax²+bx+c∵抛物线过原点∴c=0将A、B两点坐标代入y=ax²+bx3=9a-3b0=4a-2ba=1,b=2∴抛物线的解析式为y=x²+2x2.

已知抛物线C的定点在坐标原点,焦点是(3、0)求抛物线C的方程若倾斜角为45度的直线L经过抛物线的焦点F(3

焦点为(3,0),则p=6,抛物线方程为y²=6x.直线被抛物线所截得的弦长为2p/sin²α,本题中α=45°.