如果m,n是任意给定的正整数(m>n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:39:16
如果m,n是任意给定的正整数(m>n)
对数列极限概念的疑问书上写的数列极限的定义:有一数列{an},如果存在常数a,对于任意给定的正数Э,总存在正整数N,当n

有一数列{an},如果存在常数a,对于任意给定的正数Э,总存在正整数N,当n>N时,|an-a|

对于数列极限来说,若存在任意给定的ε,无论其多么小,总存在正整数N.

ε是个希腊字母,就像英文字母的x,y,z我尝试把这句话说得更明白一点儿吧:若对于任意给定(给定之前,它不一定是多少,但给定之后就不许变了)的正实数(我们下面把这个正实数取个名字,叫做ε),无论ε多么小

数列极限定义数列如果存在常数a,对于任意的给定的正数ε,总存在正整数N,使得n>N时,不等式 │Xn-a │N?完全没有

n表示第几项,N是和ε有关的一个自然数,也就是说,无论你选取多小的正数ε,当到一定项数N以后,X(n)和它极限的差的绝对值都小于ε

对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|x{n}-a|≤2ε是数列{x{n}}收敛于a的( 什么条

对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|x{n}-a|≤2ε是数列{x{n}}收敛于a的充要条件.

数列极限 数列极限 设为一数列,如果存在常数a,对于任意给定的正数ε (不论它多么小),总存在正整数N,使得当n>N时,

这个就是极限的定义,总存在正整数N,使得当n>N时,这个是很有意义的,就是说无论多么小的数ε,我都能找到一个正整数N,使得n>N时,Xn与a的距离总小于ε,就是说这个序列从N开始后的每一项都离a非常近

如果m、n是任意给定的正整数(m>n),证明:m²+n²、2mn、m²-n²是勾

a=m^2+n^2b=m^2-n^2c=2mnb^+c^2=(m^2-n^2)^2+(2mn)^2=m^4-2m^2*n^2+n^4+4m^2*n^2=m^4+2m^2*n^2+n^4=(m^2+n^

证明:任意给定正整数m,n,且m大于n,则m的平方-n的平方,2mn,m方+n方一定是勾股数.

因为m大于n所以m的平方-n的平方,2mn,m方+n方中m方+n方最大,m方+n方是斜边,另两是直角边因为(m的平方-n的平方)的平方+(2mn)的平方=(m方+n方)的平方所以m大于n,则m的平方-

如果m,n是任意给定的正整数(m〉n),证明:m的平方+n的平方,2mn,m的平方-n的平方是勾股数(又称毕达哥拉斯

(m²-n²)²+(2mn)²=m的4次方-2m²n²+n的4次方+4m²n²=m的4次方+2m²n²

如果m、n是任意给定的正整数(m>n),证明m^2+n^2、2mn、m^2-n^2是勾股数

a=m^2+n^2b=m^2-n^2c=2mnb^+c^2=(m^2-n^2)^2+(2mn)^2=m^4-2m^2*n^2+n^4+4m^2*n^2=m^4+2m^2*n^2+n^4=(m^2+n^

如果m,n是任意给定的正整数(m>n),证明:m+n、2mn、m-n是勾股数

(m^2-n^2)^2+(2mn)^2=(m^2+n^2)^2,所以他们是勾股数.追问:利用勾股定理讨论以下问题:S1、S2分别表示直角三角形中直角边上的图形,S3表示斜边上图形的面积(1)以直角三角

如果mn是任意给定的正整数(m>n)证明 m²;+n²; 2mn m²-n²是勾

令a=m²;+n²;b=2mnc=m²-n²则a^2=m^4+n^4+2m²*n²b^2=4m²*n²c^2=m^4+n

任意给定正整数n、c,找一个正整数m,使m*n的值的数字由0、1、2、……、C( 0 < C

programling;vari:longint;g,n,c:qword;{越大越好}functionss(i:qword):boolean;varj:longint;s,d:setof0..9;{设

任意给定一个大于1的正整数n,设计一个算法求出n的所有因数.

我就是高二的.第一步:输入一个大于1的正整数n;第二步:令a=1;第三步:令b是n除以a的余数;第四步:若b=0,则输出a;第五步:令a=a+1;第六步:若a

任意给定一个大于1的的正整数n,设计一个算法求出n的所有因数

显然楼上两位都没有认真思考啊教辅书上的写法是正确的.对于你的第一个疑惑:之所以判断是否等于2,是因为2只有两个因数,即1和2;如果不做n是否等于2的分类讨论,那你试着把n=2带入到步骤“2”当中,显然

高数数列的极限问题为什么说“数列的极限定义中的正整数N是与任意给定的正数ε有关,它随着ε的给定而选定”,请举例说明.

首先说这句话是正确的举例说明数列{1/n}的极限为0取ε=1|1/n-0|1只需取N为1取ε=0.1|1/n-0|10只须取N=10

给定k∈N*,设函数f:N*→N*满足对于任意大于k的正整数n,f(n)=n-k

分析:题中隐含了对于小于或等于K的正整数n,其函数值也应该是一个正整数,但是对应法则由题意而定(1)n=k=1,题中给出的条件“大于k的正整数n”不适合,但函数值必须是一个正整数,故f(1)的值是一个

给定k∈N*,设函数f:N*→N*满足:对于任意大于k的正整数

f:N*→N*表示f是由正整数集到正整数集的映射.所以无论n与k的大小关系如何,f(n)都应该是一个正整数.(1)在k=1时,条件f(n)=n-k只对n>1有效,f(1)可以是任意正整数.(2)n>4

证明:对于任意给定的正整数n,存在n项的等差正整数列,它们中的项两两互质

设这n个数为a1,a2,a3...an取am=(m-1)×n!+1(1≤m≤n)那么数列{am}是首项为1,公差为n!的等差数列其中任意两个数ap,aq(1≤p(ap,aq)=(aq-ap,ap)=(

收敛的条件判断“对任意给定的数e属于(0,1),总存在正整数N,当n大于等于N时,恒有|Xn-a|小于等于2e”是数列{

选C这和数列收敛的定义是等价的.在书上的定义中是对所有e>0,但这里我们并不关心大的e,而只关心在0的某个右邻域中的e.比如说,若当e=0.5,我们存在正整数N,当n大于等于N时,恒有|Xn-a|