如果an收敛an的三次方收敛吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:07:01
如果an收敛an的三次方收敛吗
怎么证明{an}收敛于a的充要条件是:{an-a}为无穷小数列

(1)liman=alim(an-a)=0∴an-a是无穷小数列必要性得证再答:(2)an-a是无穷小数列lim(an-a)=0liman=a充分性得证

级数an的平方收敛,an>0,求证级数an除以n收敛

这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n

若级数∑an^2和∑bn^2都收敛,求证:∑an的绝对值/n收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

级数an^2收敛,证明级数an除以n收敛(an>0)

利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p

设数列{nan}收敛,且级数∑an收敛,证明级数∑n(an-an-1)也收敛

先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛

若级数an发散,级数(an+bn)收敛则级数bn为什么是发散的?

如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.

证明级数的收敛若级数an(n从1到无穷)收敛,数列bn收敛,证明级数anbn(n从1到无穷)收敛,提示说用柯西收敛准则,

这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散

级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?

证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.

微积分,函数项级数级数∑an'(x)一致收敛(导函数),那么∑an一致收敛吗?

只是已知∑a[n]'(x)一致收敛的话∑a[n](x)可以无处收敛.因为由导数还不能完全确定原函数.例如取常值函数a[n](x)=1.a[n]'(x)=0,显然∑a[n]'(x)一致收敛,但∑a[n]

设级数∑an、∑bn均收敛,则它们的柯西乘积是否收敛?

不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn

应用柯西收敛准则证明数列{an}收敛,

根据柯西收敛准则,只需证明|a(n+p)-an|

函数收敛和发散问题!函数An收敛,Bn发散,那An*Bn的敛散性是什么啊?

不一定An=1/nBn=nAn*Bn收敛An=n/(n+1)Bn=n+2An*Bn发散

为什么an有界但是不收敛 收敛和有界有什么区别吗

我画个图给你你就知道了.再答:再答:再答:看得懂吗??再答:不要想着有界肯定收敛,像正余弦就是很好的例子,记住就好了。再问:可是这个题目图是哪个再问:我觉得an收敛啊再答:我去,没看到这个题目,我给你

1.如果无穷级数∑an(n等于1到无穷)收敛,∑an/n是否一定收敛?如果是,请证明,如果不一定,请给出反例.

harold58对于第一个问题的回答我觉得有点问题,根据菲赫金哥尔茨《微积分学教程》第二卷218页关于级数的比较定理来看,对于两个级数,an,bn,如果,至少从某处开始(比方说n>N),不等式an再问

证明:若有界数列an发散,则an存在两个收敛子列,分别收敛到两个不想等的实数

设An={ai|i>=n},n=1,2,.An是有界集,所以存在上确界bn,下确界cn.且有:c1

设数列{nan}收敛,级数∑n(an-an-1)也收敛,证明级数∑an收敛

按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^