如果an收敛an的三次方收敛吗
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:07:01
(1)liman=alim(an-a)=0∴an-a是无穷小数列必要性得证再答:(2)an-a是无穷小数列lim(an-a)=0liman=a充分性得证
这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n
用比较判别法证明.经济数学团队帮你解答.请及时评价.
利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p
先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散
证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.
只是已知∑a[n]'(x)一致收敛的话∑a[n](x)可以无处收敛.因为由导数还不能完全确定原函数.例如取常值函数a[n](x)=1.a[n]'(x)=0,显然∑a[n]'(x)一致收敛,但∑a[n]
不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn
根据柯西收敛准则,只需证明|a(n+p)-an|
不一定An=1/nBn=nAn*Bn收敛An=n/(n+1)Bn=n+2An*Bn发散
我画个图给你你就知道了.再答:再答:再答:看得懂吗??再答:不要想着有界肯定收敛,像正余弦就是很好的例子,记住就好了。再问:可是这个题目图是哪个再问:我觉得an收敛啊再答:我去,没看到这个题目,我给你
harold58对于第一个问题的回答我觉得有点问题,根据菲赫金哥尔茨《微积分学教程》第二卷218页关于级数的比较定理来看,对于两个级数,an,bn,如果,至少从某处开始(比方说n>N),不等式an再问
设An={ai|i>=n},n=1,2,.An是有界集,所以存在上确界bn,下确界cn.且有:c1
由于有0
按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^