如图点b在线段CD上,bc平行ED,BC等于DB求证角a等于角e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:55:17
如图点b在线段CD上,bc平行ED,BC等于DB求证角a等于角e
已知平面α平行β,直线AB分别交α,β于点A,B,直线CD分别交α,β于点C,D,M,N分别在线段AB、CD上

1,若直线AB和CD共面,则四边形ABDC是梯形,由AM/MB=CN/ND.得MN平行于BD,则MN//平面β2,若直线AB和CD异面,过点A作直线CD的平行线,交平面β于点E,在线段AE上取一点F,

在三角形ABC中,点D在线段BC的延长线上,且向量BC=3向量CD,点O在线段CD上…

o是多余的?再问:没有啊再问:若向量AO=x向量AB+(1-x)向量AC再问:我没写好…再答:再答:答案应该对了再问:光线暗暗的看不清楚,能再拍一张过来么?再答:再答:给分哦再问:再问:我先问个问题,

在三角形ABC中,点D在线段BC的延长线上且向量BC等于向量CD,点O在线段CD上(与点c.D不重合)若向量AO等于X向

设BO=tBC,则1再问:����t��ȡֵ��Χ����ô������再答:���o��CD�ϣ��Բ����Ұ�t�ķ�Χ����ˣ�Ӧ����1��t��2�����Ӧ��Ϊ-1��x��0

在三角形ABC中,点D在线段BC的延长线上,且向量BC=三倍的向量CD,点O在线段CD上(不与点C,D)重合,若向量AO

看图再答:再问:谢谢你,再问:已知向量a=(x,1),b=(-x,x),则下列关于向量a+b的说法正确有?①平行于x轴,②平行于第一,三象限的角平分线,③平行于y轴,④平行于第二,四象限的角平分线,再

初一平行数学题已知直线a‖b,直线a,b上分别有A,B两点,直线c与直线a,b分别交与CD两点,有一动点P在线段CD之间

是的,你只要将线段BD或者AD延长与直线a或b相交于一点E或F就可以发现∠DBP=∠AEP(由于两直线平行)所以∠BPA=∠CAP+∠DBP(补角定理)

如图所示,已知两条异面直线AB与CD,平面MNPQ与AB、CD都平行,且M,N,P,Q依次在线段AC,BC,BD,AD上

证明:∵AB∥平面MNPQ∴AB∥MN同理:AB∥PQ∴MN∥PQ同理:MQ∥NP∴四边形MNPQ是平行四边形

如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.

∵C是线段BD的中点,∴BC=CD,∵BC=3,∴CD=3;由图形可知,AB=AD-BC-CD,∵AD=10,BC=3,∴AB=10-3-3=4.

初中比例线段题目如图点B,C在线段AD上,且AB:BC=AD:CD,求证1/AB+1/AD=2/AC

AB:BC=AD:CD,得:AD*BC=AB*CD(1)1/AB+1/AD=2/AC等式两边同乘以AB*AD*AC得AD*AC+AB*AC=2*AB*ADAD*(AB+BC)+AB*AC=2*AB*A

如图,已知长方形ABCD,AD‖BC,AB‖CD,∠B=90°,∠BAC=60°,AB=根号3,在线段BC上取两点E,F

恩,题好像没有写完.继续再问:以EF为边做等边三角形PEF,使顶点P在线段AD上,PE,PF分别交AC于点G,H(1)求△PEF的边长;(2)若△PEF的边EF在线段BC上移动,是猜想:PH与BE有怎

在如图11*11方格内,A,B,C,D四个点都在方格的顶点上,且AB=BC=2CD=4.P在线段BC上的动点,连接AP,

K存在最小值,这个题其实就是一个常规题型,当APD‘成一条直线的时候K最小.由题意得K=AP+PD’.通过计算得K=根号52

如图,已知直线a平行b,直线c和直线a,b分别交于点C和点D,点P在线段CD上.

1.P在a外侧:∠APB=∠DBP-∠CAP2.P在b外侧:∠APB=∠CAP-∠DBP只要过点P作a、b的平行线就很清楚了

1.如图 点B,C在线段AD上,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是 2.平面上的三条直线

1、设AM=x,DN=y,AD=x+y+a=2x+b+2y解之,得:AD=2a-b2、三条线成女字形,分平面成7份.

已知,∠ABC=∠ADC,AB‖CD,E为射线BC上一点,AE平分∠BAD (1)如图一,当点E在线段BC上时,求证∠B

(1)因为∠ABC=∠ADC且AB∥CD所以四边形ABCD是平行四边形因为AE平分∠BAD所以∠BAE=∠EAD由于平行四边形中AD∥BC所以∠DAE=∠AEB所以∠BAE=∠BEA(2)因为平行四边

如图:E在线段CD上,EA、EB分别平分∠DAB和∠CBA,点F在线段AB上运动,AD=4cm,BC=3cm,且AD∥B

(1)AE⊥BE;(1分)∵EA、EB分别平分∠DAB和∠CBA,∴∠2=12∠DAB,∠3=12∠ABC,∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠2+∠3=90°,∴∠AEB=90°,∴A

如图,将两个相同的三角形不留空隙地拼在一起,观察图形,在线段AB,BC,CD,DA中,哪些线段互相平行?为什么?

解AD平行BC因为∠CAD=∠BCA(内错角相等,两直线平行)AB平行CD因为∠BAC=∠ACD(内错角相等,两直线平行)

已知,如图,点B在线段CF上,AB平行CD,AD平行BC 求证:S△AEF=S△BCE

证明:连接BD,因为BC∥AD.所以SΔAFD=SΔABD因为AB∥CD所以SΔBEC=SΔBED所以SΔADE+SΔBEC=SΔABD=SΔAFD=SΔADE+SΔAEF所以S△AEF=S△BCE

如图,已知E、F在线段BD上,三角形ABF全等于三角形CDE 1.说明AB平行于CD 2.说明AF平行于CE 3.说明B

三角形ABF全等于三角形CDE所以角B=角D所以AB平行于CD三角形ABF全等于三角形CDE所以角AFB=角DEC所以AF平行于CE三角形ABF全等于三角形CDE所以DE=BF所以DE+EF=BF+E