怎么判断斜率是正无穷和负无穷
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:05:14
无穷小量即极限是0;无穷大量即极限是无穷大.(要指出自变量的变化趋势)如x^2当x趋于0是无穷小;1/x当x趋于0是无穷大.
不存在.说明你的计算方法有问题.可能需要分段几分,或其他技巧再问:上下线都是无穷的广义积分就是可能不存在的,方法没错。就是想知道负无穷加正无穷等于0吗?是不是只要有一个积分发散,整体这个广义积分就发散
要注意前提条件的!当N趋向负无穷时应该是有极限无限趋向于0!当N趋向正无穷时应该是无极限趋向于正无穷!题目应该有条件的.
显然,a≠-1∵lim(x->∞)[√(x²-x+1)-ax-b]=0==>lim(x->∞){[x²-x+1-(ax+b)²]/[√(x²-x+1)+ax+b
给你一个不是很严密的做法,严格做法在同济大学高等数学教材中有(下册二重积分极坐标部分)设u=∫[-∞,+∞]e^(-t^2)dt两边平方:下面省略积分限u^2=∫e^(-t^2)dt*∫e^(-t^2
反常积分,I=arctanx|(-∞,+∞)=π/2-(-π/2)=π
设x2>x1>0那么-x2
直线x轴垂直,则斜率不存在,就不能问斜率k的取值范围,而有斜率K就肯定不是和x轴垂直.
在(0,正无穷)上是减函数,用单调函数的定义法证明假设x1>x2>0,现在考察f(x1)与f(x2)的大小关系.由x1>x2>0,则-x1
取大头法这个书上有的吧X趋于无穷的时候看X的高次这里只要看X^3的情况所以X趋于正无穷大时值为正无穷大,X趋于负无穷大时值为负无穷大.统称为无穷大.
如果上面要问的函数是y=(x-1)^3的话,楼主可作如下思考首先,可把y=(x-1)^3看作是将幂函数y=x^3在坐标系的图像整体向右移动一个单位.根据y=x^3在其定义域中的单调递增来看,y=(x-
∫dx/1+x^2=arctanxlim(x→+∞)arctanx=π/2lim(x→-∞)arctanx=-π/2所以原式=π/2-(-π/2)=π
在搜狗软键盘处鼠标右击各种复杂的字母和数学符号都有望采纳
∫(-inf,+inf)dx/(16+x^2)=∫(-inf,+inf)dx/16(1+(x/4)^2)=(1/4)*∫(-inf,+inf)d(x/4)/(1+(x/4)^2)=1/4arctan(
随便找一个你的程序永远也取不到的很大的数就行了,我们学数据结构时都是这么干的.等到你学了迭代器之后,调用end函数返回的就是一个类似哨兵的东西,指向最后一个数据的下一个位置
答案是:00;分别可以求得:(1)0
这里的y=cot4x是一个函数.把x代成角度或是弧度再进行计算.根据cotx的图像可知:该函数的周期为π,以(0,π)为一个周期来看,则是越靠近y轴就越大(不能与y轴相交,也就是无穷大),越接近x=π