如图正方形abcd中e是ab的中点,F在BC边上,BF=nBC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:05:54
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
好评给我把再答:再问:答案拿来再答:发了再问:采纳了
根据已知条件很容易算出来三角形ACD的面积,以及E到AB的距离从而可以算出四面体E-ACD的体积.四面体E-ACD的体积等于四面体D-ACE的体积而三角形ACE的面积也很容易求最终D到ACE的距离,即
设正方形的边长为X在直角三角形EBC中,BC=X,EB=X/2根据勾股定理,CE长度的平方=X^2+X^2/4=5X^2/4=20X^2/16在直角三角形AEF中,AF=X/4,AE=X/2根据勾股定
(1)图中是通过绕点A旋转90°,使△ABE变到△ADF的位置.证明:(2)BE=DF,BE⊥DF;延长BE交DF于G;由△ABE≌△ADF,得BE=DF,∠ABE=∠ADF;又∠AEB=∠DEG;∴
假设AB=BC=4(为了计算方便,当然设它=a也可以,不影响过程)则EF=√5CF=5EC=2√5可知三角形CEF为直角三角形腰EG=2又三角形CBE为直角三角形BC/BE=CE/EF=2所以三角形C
十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P
(1)在AD上截取AK=AM,则K为AD中点,连接KM,下面证明三角形KMD和BNM是全等的:角BMN+角AMD=90度,角BMN+角ADM=90度,故角BMN=角ADM;角DKM=180-45=13
题目有误:F应该是AD上的一点AF=1/4=AD(请楼主注意,如果按题意说法,F点不应在AD上两倍关系啊,若为1/2AD,也不对可以从数据分析三角形FEC绝对不是直角三角形)设边长是1因为E为AB的中
(1)全等证明:∵四边形ABCD是正方形∴AD=AB,DA⊥AB∴∠DAF=∠DAB=90°∵AF=1/2AB∴AF=1/2AD∵E是AD中点∴AE=DE∴AF=AE∵AD=AB,∠DAF=∠DAB∴
证明:BE=DF∵E是AD的中点AF=1/2AB且在正方形ABCD中∴AF=AEAD=AB∵△ABE≌△ADF∴BE=DF
证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.  
帮你找到原题了,真的一模一样http://www.qiujieda.com/math/128309/(只需把字母按你的图形对应就行,证明了是直角,就等同是垂直了)以后遇到初中数理化难题都可以来这个网站
/>如图根据勾股定理得CE²=DC²+DE²=6²+3²=45CE=3√5根据三角形DCE的面积公式得½DC*DE=½CE*DMD
连接DE,交AC于点P,连接BD∵点B与点D关于AC对称∴DE的长即为PE+PB的最小值∵AB=4,E是BC的中点∴CE=2在Rt△CDE中DE=√(CD^2+CE^2)=√(4^2+2^2)=2√5
,全等,∵ABCD是正方形,E是AD的中点,∴AE=1/2AD=1/2AB,又∵AF=1/2AB,∴AE=AF,AB=AD,∠DAB=∠DAF,∴△DAF≌△BAE,∴DF=BE
目测三角法,现行送上(O为CE,BF交点)修正完整版再问:这个题是初二初三的题,有没有容易理解的解法?比如说图形法,反证法等,谢谢再答:当然有,只是习惯了用计算,懒得添辅助线延长BF交AB于H可以证明