如图抛物线y=-x² 2x 3与x轴交于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:11:35
如图抛物线y=-x² 2x 3与x轴交于
如图,抛物线y=1/2x²+3/2x-2与x轴交于A、B两点,与y轴交于C点。

(1)y=1/2(x²+3x-4)=1/2(x+4)(x-1)所以A:(1,0);B:(-4,0);C:(0,-2)(2)∵OA:OC=OC:OB=1/2、∠AOC=∠COB∴ΔAOC∽ΔC

如图,抛物线y=-x平方+bx+c与x轴交与A(-1,0)B(-3,0)两点求该抛物线解析式该抛物线

按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-

如图,抛物线y=x平方-2x-3,抛物线与x轴交予A,B两点A在左

y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P

如图抛物线y=-1/2x²+1/2x+6与x轴交于A,B两点,与y轴交于点C

记得拆那我啊……)我在《求解答网》帮你找到原题哦.以后不会的问题,就直接去求解答网,方便快捷,答案还详细.

如图,抛物线y=-x平方+2x+3与x轴相交于A,B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与

这个题不是很难,主要考查了待定系数法求解析式,二次函数的交点,顶点坐标,对称轴,以及相似三角形的判定及性质,求得三角形相似是本题的关键做出来这一步,这个题就迎刃而解了,答案http://www.qiu

如图,抛物线y=-1/2x^2+5/2x-2与x轴相交于点A,B.与y轴相交于点C.

顶点:(2.5,0)C:(0,-2)开口向下A(1,0)B(4,0)(1)在三角形AOC和三角形COB中因为OC/OA=OB/OC=2又因为角AOC=角COB=90所以三角形AOC∽三角形COB(2)

如图,抛物线y=x^2+2x-3与x轴的交于A,B两点,与y轴交于C点.

1、令y=0,则x^2+2x-3=0,(x+3)(x-1)=0,x1=-3,x2=1,B(-3,0),令x=0,y=-3,C(0,-3),2、由前所述,A(1,0),y=(x+1)^2-4,对称轴为x

如图,抛物线y=-x²+2x+3与x轴交于A、B两点,与y轴交于C点,将抛物线y=-x²+2x+3沿

Y=-X^2+2X+3=-(X-1)^2+4,顶点坐标:(1,4),平移后的顶点设为(m,4),Y=-(X-m)^2+4,X=0时,Y=4-m^2,Y=0时,X=m±2,∴F(0,4-m^2),E(m

如图,已知抛物线y=-x平方+2x+3与x轴交于A、B两点,与y轴交于点C,连接BC.

(1)令Y=0  -X²+2X+3=0得X=3或X=-1∴A(-1,0)B(3,0)令X=0  则Y=3∴C(0,3)(2)设直线BC:Y=k

如图,已知抛物线y=x²+3x-4与x轴交于A,B两点,与y轴交于C点,直线y=2x+2与抛物线交于

(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点

如图,抛物线y=x2-2x-3与x轴交A、B两点

容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=

如图,抛物线y=-x²+2x+3,交x轴

根为3和-1再问:���再问:�ܽ����再答:再答:�в��У�����再问:���������再答:���������ʵ���再答:��ʽ�ֽⷨ��һԪ���η���再问:������再答:���

如图抛物线y=a(x-1)2+4与x轴交于AB两点与y轴交于点CD是抛物线的顶点抛物线的对称轴与X轴交于eAB=DE解析

抛物线y=a(x-1)^2+4与x轴交于A(1-√(-4/a),0),B(1+√(-4/a),0),顶点D(1,4),对称轴与x轴交于E(1,0),由AB=DE得2√(-4/a)=4,∴-4/a=4,

如图,抛物线y=-x平方+ax+b与x轴交与a(-二分之一,0),b(2,0),而且与y轴交与c,

①将A(-1/2,0)B(2,0)代入y=-x²+ax+b中得{-1/4-1/2a+b=0-4+2a+b=0}联立解得a=3/2,b=1∴y=-x²+3/2x+1.令x=0得y=1

如图,抛物线y=-x^2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与

D(1,4),C(0,3),B(3,0)BC方程是y=3-x,当x=1时y=2,所以E(1,2)∴DE=2设过E(1,2)的直线是y-2=k(x-1)联立抛物线方程,消去y得到一个关于x的二次方程:x

如图,在平面直角坐标系中,抛物线y=1/2x*2经过平移得到抛物线y=1/2x*2-2x,其对称轴与两段抛物线所围成的阴

4y=1/2x^2-2x与y=1/2x^2一减,得到|y|=|2x|,也就是说,在0≤x≤2的范围内,阴影部分与y轴平行的长度与该长度到y轴距离是正比关系,其实阴影部分的面积就是一个底为两函数在x=2

如图,抛物线y=x^2-2x-3与x轴交A.B两点

1y=(x-1)^2-4则A(-1,0)B(3,0)C(2,-3)AC解析式为y=-x-12PE=P点纵坐标-E点纵坐标=-x-1-x^2+2x+3=-(x-1/2)^2+9/4x属于[-1,2]因为