如图抛物线Y=-X2 BX C与x轴交于AB两点与Y轴交于点C,点O为坐标原点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:49:21
(1)y=1/2(x²+3x-4)=1/2(x+4)(x-1)所以A:(1,0);B:(-4,0);C:(0,-2)(2)∵OA:OC=OC:OB=1/2、∠AOC=∠COB∴ΔAOC∽ΔC
按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-
y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P
由y=-x²-2x+2,令x=0,得y=2,所以C点坐标为(0,2)又y=-x²-2x+2-(x²+2x-2)=-(x+1)²+3得抛物线的顶点坐标为(-1,3
记得拆那我啊……)我在《求解答网》帮你找到原题哦.以后不会的问题,就直接去求解答网,方便快捷,答案还详细.
顶点:(2.5,0)C:(0,-2)开口向下A(1,0)B(4,0)(1)在三角形AOC和三角形COB中因为OC/OA=OB/OC=2又因为角AOC=角COB=90所以三角形AOC∽三角形COB(2)
Y=-X^2+2X+3=-(X-1)^2+4,顶点坐标:(1,4),平移后的顶点设为(m,4),Y=-(X-m)^2+4,X=0时,Y=4-m^2,Y=0时,X=m±2,∴F(0,4-m^2),E(m
(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点
容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=
解题思路:本题的关键是证明△AEF∽△DEG,设E(1,a),由相似比得关于a的方程,可得E的坐标,再求出AE的解析式,最后与抛物线的解析式联立方程组即可。解题过程:
关于y轴对称时偶函数∴令y=y,x=-x∴y=2/3x2-16/3x+8
抛物线y=a(x-1)^2+4与x轴交于A(1-√(-4/a),0),B(1+√(-4/a),0),顶点D(1,4),对称轴与x轴交于E(1,0),由AB=DE得2√(-4/a)=4,∴-4/a=4,
分析:(1)根据题意得点A的坐标是将x=1代入即可,根据对称性可得点B的坐标,即可得OB的解析式,与二次函数的解析式组成方程组即可求得点D的坐标;(2)当四边形ABCD的两对角线互相垂直时,由对称性得
①将A(-1/2,0)B(2,0)代入y=-x²+ax+b中得{-1/4-1/2a+b=0-4+2a+b=0}联立解得a=3/2,b=1∴y=-x²+3/2x+1.令x=0得y=1
(1)A(3,0)B(0,-3)则c=3y=x2+bx-3当x=3,y=0时,b=-2y=x2-2x-3(2)的题目有问题吧!
4y=1/2x^2-2x与y=1/2x^2一减,得到|y|=|2x|,也就是说,在0≤x≤2的范围内,阴影部分与y轴平行的长度与该长度到y轴距离是正比关系,其实阴影部分的面积就是一个底为两函数在x=2
∵抛物线y=x2与直线y=x交于A点,∴x2=x,解得:x1=1,x2=0(舍去),∴A(1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C.
1y=(x-1)^2-4则A(-1,0)B(3,0)C(2,-3)AC解析式为y=-x-12PE=P点纵坐标-E点纵坐标=-x-1-x^2+2x+3=-(x-1/2)^2+9/4x属于[-1,2]因为
假设B是函数平移后与X轴的右交点△ABD是等边三角形,则OD=√3OB设函数Y=-X²向上平移后解析式为:Y=-X²+C此时函数与X轴交点,代入Y=0X=±√C因为C大于O,因此O