如图所示在矩形abcd中,AB=7cm,BC=根号2cm

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:53:44
如图所示在矩形abcd中,AB=7cm,BC=根号2cm
如图所示,在矩形ABCD中,AB=4cm,BC=10cm,AE平分∠BAD,DF平分∠ADC,则四边形AEFD的面积为多

∵△ABE,△DCF为等腰直角三角形∴S△ABE=S△DCF=4*4/2=8∴S◇AEFD=4*10-8*2=24cm²

在如图所示的几何体中,四边形ABCD是矩形,AB=2BC=4,四边形CDEF是等腰梯形,EF//DC,EF=2,且平面A

解题思路:(Ⅰ)连接AC交BD于点H,连接GH.利用线面平行的性质定理及三角形中位线定理可得结论;(Ⅱ)以O为原点建立空间直角坐标系O-xyz所求值即为平面ABF的法向量与平面ADF的法向量的夹角的余

如图所示,在矩形ABCD中,E为AD的中点,EF垂直EC,交AB于点F,连接FC(AB大于AE)

1)相似理由:因为∠AEF+∠DEC=∠DEC+∠DCE=90度所以∠AEF=∠DCE又因为∠A=∠D=90度所以△AEF∽△DCE(AA)所以AF/DE=EF/EC有因为DE=AE所以AF/AE=E

如图所示,在矩形ABCD中,AB=4,BC=3,将矩形ABCD放置于直角坐标系中,使点A与坐标原点O重合,AB与X轴正方

点B(2倍根号3,2)点C(2倍根号3减二分之三,二分之三倍根号三加二)点D(负的二分之三,二分之三倍根号三)

如图所示,在矩形ABCD中,E是AB的中点,DF垂直CE于点F,若AD=8,AB=4,求DF.

s矩形=4*8=32s(aed)=8s(cbe)=8s(edc)=32-8-8=16ec=2根下171/2*ec*df=s(edc)=16df=16/17*根下17

如图所示,在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、D

(1)如图1,过点G作GM⊥BC于M.在正方形EFGH中,∠HEF=90°,EH=EF,∴∠AEH+∠BEF=90°,∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF,又∵∠A=∠B=90°,∴△A

如图所示,在矩形ABCD中,AB=6,BC=8,将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处,求EF的

∵AB=6,BC=8∴AC=10∵CD=-CF∴AF=4三角形AEC面积=4*10/2=20,∵三角形面积AEF:三角形面积CEF=4:6∴三角形面积CEF=12∴EF=4

如图所示,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D'处,求折叠部分三角形AFC的面积.

△BCF和△D′AF中AD′=AD=BC∠D′=∠B=90∠AFD′=∠CFB所以△D′AF≌△BCF,CF=AF因为AF+BF=AB=8所以设CF为X,则BF为8-X在RT△BCF中(8-X)

(2014•崇明县二模)如图所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,AB=1,BC=2,AA1

(1)证明:∵在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,∴以D1为原点,D1A1为x轴,D1C1为y轴,D1D为z轴,建立如图所示空间直角坐标系.∵AB=1,BC=2,AA1=2,E

(2014?崇明县二模)如图所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,AB=1,BC=2,AA1

(本题满分12分)本题共有2小题,第1小题满分(6分),第2小题满分(6分).(1)因为在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,AB=1,BC=2,AA1=2,E是侧棱BB1的中点

如图所示在矩形纸片abcd中,将矩形折叠ae=2,cm=4

此题主要考查勾股定理的应用,要学会作辅助线,构造直角三角形,这是在求解答网找到的答案,数理化的题目不会的它都可以搜到的呢,好多同学都在用呢,老师出的题目说不顶也能在上面找得到呀,加油,好好学习!再问:

如题:如图所示 在矩形abcd中 矩形ebfg通过平移变化得到矩形HMND,点E,F,N,H都在矩形ABCD的边上,若B

答:设S3矩形的长高为x和y,依据题意有:BE=HM=3,BF=MN=4所以:AB=HM+BE-y=6-yBC=BF+MN-x=8-x所以:AE=AB-BE=6-y-3=3-yAH=AD-HD=8-x

如图所示,在矩形ABCD中,E为AD的中点,EF⊥EC交AB与点F,连接FC(AB>AE).

、、、无语这图也画的太形象了相似?不是相似我会做

如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF且AB=2 S 矩形ABCD=3S矩形ECDF

S矩形ABCD=3S矩形ECDF推出AF=2FD——(1)矩形ABCD~矩形ECDF且AB=2推出AF*FD=FE*FE=AB*AB=4(2)设FD=x,则由(1)得AF=2x未知数代入(2)中,2x

如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF,AB=2,S矩形ABCD=9S矩形ECDF,

答案=12求解如下:答:因为:S矩形ABCD=9S矩形ECDF所以:AB*BC=9*EC*CD,又因为:AB=CD=2所以:BC=9EC(1)因为:矩形ABCD~矩形ECDF所以:AB/EC=BC/C

矩形ABCD中,E、F分别在BC、AD上,矩形ABCD相似矩形ECDF,且AB=2,S矩形ABCD=4S矩形ECDF,

S矩形ABCD=4S矩形ECDF==>相似比为2矩形ABCD相似矩形ECDF==>BC:CD=相似比2CD=AB=2BC=4面积=2*4=8