如图所示,三角形abc中,p是角abc,角acb外角的平分线bp

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:06:31
如图所示,三角形abc中,p是角abc,角acb外角的平分线bp
三棱锥P-ABC中,M,N是三角形PAB和三角形PBC的重心.求证MN//平面ABC

延长PM交AB于点D,延长PN交BC于点E,连结DE由于M,N是三角形PAB和三角形PBC的重心所以PM/PD=2/3,PN/PE=2/3故PM/PD=PN/PE又角P=角P所以三角形PMN相似于三角

如图所示,点P是三角形ABC内的任意一点,求证:AB+AC>BP+PC

过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P

已知在三角形abc中,ab=ac,p是三角形abc内一点,且角apb=角apc

证明:把⊿APB绕点A旋转至⊿ADC的位置(如图).则∠ADC=∠APB=∠APC;DC=PB,AD=AP.∴∠ADP=∠APD.∴∠CDP=∠CPD(等式性质)则PC=DC=PB.

如图所示,已知P是三角形ABC内的一点,试说明PA+PB+PC>(AB+BC+AC)

不等号后面忘记除以2了吧?PA+PB>ABPB+PC>BCPC+PA>AC三个相加除以2PA+PB+PC>(AB+BC+CA)/2

如图所示,P是三角形ABC所在平面外一点,A',B',C'分别是三角形PAB.PBC.PAC的重心

作AB中点M,AC中点N,连MN则PM,PN分别过A',C',则由于PA':PM=2:3平面A`B`C`平行平面ABC

如图所示,已知p是三角形ABC内一点,是说明PA+PB+PC大于 二分之一(AB+BC+AC)

很简单再答:两边之和大于第三边再问:算式再问:过程再答:你把两边都乘2再答:因为PA+PB大于AB再答:PA+PC大于AC再答:PB+PC大于BC再答:所以懂了吧再问:哦哦再答:呵呵

如图所示,已知在三角形ABC中,AB

AC=AE+CE=8,因为DE垂直平分BC,所以BE=CE所以AE+BE=8ABE周长为AE+BE+AB=14AB=6

如图所示,在三角形ABC中,P是角BAC的平分线AD上一点,AB>AC,求证,PB>PC

证明:在AB边上取一点E,使AE=AC,连接EP,延长交于AC于F在△ADE和△ADC中∵AE=AC(已作)∠BAD=∠CAD(已知)AD=AD(公共边)∴△ADE≌△ADC∴PE=PC,∠AEP=∠

如图所示 在三角形abc中,

解题思路:根据直角三角形的知识可求解题过程:最终答案:略

如图所示,在三角形ABC中,AB=AC,AD是BC边上的高,P是AD的中点延长BP交AC于点F.(

图了?再问:再答:1.过D作DE平等交AC于E,AB=AC,AD是BC边上的高,则D是BC中点,DE是三角形CBF的中位线,DE=1/2BF。P是AD的中点,PF是三角形ADE的中位线,PF=1/2D

如图所示三角形ABC是

(1)因为EF‖AB,所以∠EFC=∠A因为FG‖BC,所以∠AFG=∠C因为∠EFC=∠AFG,所以∠A=∠C所以∠B=180°-2∠A=40°(2)∠EFG=180°-2∠AFG∠EGF=180°

如图所示,在三角形ABC中,AB=25,AC=7,BC=24.△ABC是个什么三角形?

AC²+BC²=7²+24²=625AB²=25²=625AC²+BC²=AB²三角形是以AC、BC为直角边,

如图所示,在三角形ABC中,∠B=2∠A,AB=2BC,证明三角形ABC是直角三角形

楼上的二位朋友,这题怎么能够用SinA来做呢?单个SinA只能发生在RT△中,才有sinA=BC/AB.现在要的是求△为什么是RT△.可是你们已经把它看成RT△.那还求什么呢?看我这样解,是否可以解:

如图所示,已知:三角形ABC中,BC

因为DE为AB的垂直平分线所以EB=EA所以EB+EC=EA+EC=AC=9CM三角形BCE的周长=EB+EC+BC=9CM+BC=15CM所以BC=6CM

如图所示,在三角形ABC和三角形PDQ中,AC=BC,DP=DQ,角C=角PDQ,D、E分别是AB、AC的终点,点P在直

取BC的中点F,连结DF、EF、DE则DF、EF、DE都是△ABC的中位线∴DE=1/2BC=1/2AC=DF易证四边形DECF是平行四边形∴∠EDF=∠C=∠PDQ∴∠EDF+∠FPQ=∠PDQ+∠

如图所示,在Rt三角形ABC中,AD是斜边上的高,P,Q,R分别是边AB,BC,CA上的点,求证:AD

作Q关于AB,AC对称点Q1,Q2∵PQ=PQ1,QR=Q2R∴PQ+QR+PR>=Q1Q2,(当P,R都在A点取等)∵∠Q1AB=∠QAB,∠Q2AC=∠QAC∴∠Q1AB+∠Q2AC=∠QAB+∠

如图所示,点P,Q是三角形ABC中BC边上的两点,并且BP=PQ=QC=AP=AQ.

1).三角形APB全等于三角形AQC三角形ABQ全等于三角形ACP2).证明三角形ABQ全等于三角形ACP:因为AP=AQ所以角APC=角AQB因为BP=PQ,PQ=QC所以BP+PQ=PQ+QC即B

三角形ABC 中,P是三角形ABC内一点,试证明:角BPC> 角BAC

解题思路:本题主要考察了三角形外角和内角的关系的相关知识点。解题过程:

在三角形ABC中,设命题p:a/sinB=b/sinC=c/sinA,命题p:三角形ABC是等边三角形,那么命题p是命题

命题p:a/sinB=b/sinC=c/sinA由正弦定理a/sinB=b/sinC=c/sinA得sinA=sinB=sinC,∴A=B=C⇒a=b=C、反之,亦成立.故答案为:充分必要