如图已知点ABC在圆O上且B是弧AC的中点OA=5cos∠OAB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:33:53
(1)CD为⊙O的切线(1分)证明:连接OD,∵OB=OD,∴∠B=∠ODB,∵AC=BC,∴∠B=∠A,∴∠ODB=∠A,∴OD∥AC,∴∠ODC=∠DCA,∵CD⊥AC,∴∠DCA=90°,∴∠O
连接AB,分情况讨论AB为腰,由对称性可知C(-3,0);2.AB为底,取AB中点,P(3/2,2),解AB直线L1:4/3x+y-4=0,再设过点P的直线L2垂直L1,解得L2:3/4x-y+7/8
连接OD、DE、DB,设⊙O半径为r,∵CD为⊙O切线,∴∠ODA=90°,∵BE为⊙O直径,∴∠BDE=90°,∴∠ADE=∠BDO,∵OB=OD,∴∠OBD=∠ODB,∵∠DAE=∠BAD,∴△A
作OD垂直于BC,垂足为D,当圆O与直线BC相切时,OD=r=1/2,因为角B=60度所以BO=ODsinB=(根号3)/4.因为BO=a,所以当a=(根号3)/4时,直线BC与圆O相切,当0
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
(1)直线BD与⊙O相切. &nb
(1)因为AB是直径,所以角ACB是90度,又因为BC=1/2AB=3(直角边是斜边的一半),所以角BAC=30度sin30度=1/2,sin角BAC的值为1/2(2)因为OE垂直AC,O为AB中点,
(1)连结OB∵∠OBC=∠OCB,∠BOC=2∠D∴∠OBC+∠BOC/2=90°∴∠OBC+∠D=90°∵∠ABC=∠D∴∠ABC+∠OBC=90°,∴OB⊥AB,AB为圆的切线.(2)∵tanD
(1)连接BD∵D是ADE弧的中点∴弧度AD=弧度DE∴∠ABD=∠EBD【等弧对等角】∴BD是∠ABC的平分线∵BA=BC∴△ABC是以∠ABC为顶角的等腰三角形∴BD⊥A,即∠ADB=90°【等腰
连DO、CO、AO,∠ACB=90°,AD=BD,根据直角三角形斜边上的中线等于斜边的一半,可得DA=DC,又DO=DO,OA=OC,因此△DOA≌△DOC,∴∠DCO=∠DAO=90°,∴CD是切线
连接OA,OB,OC因为BC边的中垂线与AB边的中垂线交于点O所以OA=OB=OC所以O在BC边的垂直平分线上.(线段垂直平分线上的点到线段两端点的距离相等)
由C点做一条直线CD并使CD过圆心O点交圆上于D点再连接DBCD过圆O的圆心故∠DBC为直角.又∠ABC于∠DBC是圆O上共用弧BC上的两角故∠ABC=∠DBC然推出sinA=sinD=BC:DC=3
证明:∵AB=CD,∴∠ACB=∠DBC,在△ABC与△DCB中,∠A=∠D∠ACB=∠DBCBC=CB,∴△ABC≌△DCB(AAS).
△ABC是等边三角形因为同一条弧所对的圆周角相等角BPC=BAC=60角APC=ABC=60所以角ACB=60
连接DO由已知条件OC:CB=1:3得BE=EO=OC=DO因为AD,AC为圆O的切线,所以AD=AC=2RT△ABC和RT△BOD相似所以DO/AC=BD/BCDO/2=BD/3DO即DO^2=2*
在!你可以连接a,o因为cd垂直于ab,be垂直于ac所以角bdc=角ceb=90度,又因为角bod和角coe是对角所以相等,ob又等于oc可证出三角形bod全等于三角形coe(角角边定理),所以od
证明:∵等边三角形ABC∴AB=AC,∠BAC=∠ACB=60∵AE=CF∴△ABE≌△CAF(SAS)∴AF=BE,∠ABE=∠CAF∴∠BOF=∠ABE+∠BAF=∠CAF+∠BAF=∠BAC=6
AD:AE=8:10连接deade相似于abc折AC:AB=8:10分别设为8x10x勾股定理后面就简单啦88
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60