如图在平行四边形abcd中点p是ab边上的一点cp=cd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:48:01
由平行四边行ABCD得出角ADC+角BCD=180度,因为角BCD+角BCF=180度,所以角BCF=角ADC=角ABC.因为E是BC的中点,所以BE=EC.AF与BC交叉,所以AEB=CDF.条件角
延长BE交AD于F,则△BCE≌△GDE,所以AD=GD,又AP⊥BE所以PD是直角三角形APG斜边上的中线,所以PD=AD
证明:连接AC,交BD于O,连接MO.因为四边形ABCD是平行四边形,所以O是AC的中点,又因为M是PC的中点,所以MO∥PA.又因为MO⊂平面BDM,PA⊄平面BDM,所以,PA∥平面BDM.又因为
是证明BC=2AB作MN//AB交CE于F,交BC于N,连结CM则F、N分别为EC、BC的中点又CE⊥AB∴CE⊥MN则MN垂直平分CE∴∠CMN=∠EMN∵MN//AB∴∠EMN=∠MEA(内错角)
连接AC,交BD于O因为E,F是AB,BC的中点,所以,EF是三角形ABC的中位线,EF//AC根据平行线截割比例线段定理,BE/AE=BP/PO=1即BP=PO因为O是平行四边形ABCD的对角线的交
证明:连接BD,交AC于点O,连接EO,∵四边形ABCD为平行四边形∴BO=OD,∵点E是PD的中点,∴E0是△DBP的中位线,∴EO∥BP,又EO⊂平面AEC,BP⊄平面AEC,∴PB∥平面AEC.
证明:【1】如(图一)连接BD、AC,两线交于O∴O是BD的中点(平行四边形对角线互相平分)∵F是DE的中点(由三等分点得到)∴OF是△DEB的中位线∴BE‖OFOF在面ACF中∴BE平行平面ACF【
证明:∵四边形ABCD是平行四边形∴AD=BC,AD//BC∵E,F分别是BC,AD的中点∴AF=BE=FD=EC在△AGF与△EGB中∠GAF=∠GEB,∠GFA=∠GBE,AF=BE=1/2AD∴
解题思路:本题主要考查对直角三角形斜边上的中线,平行四边形的性质和判定等知识点的理解和掌握,能求出AF=DF=EF是解此题的关键解题过程:最终答案:90度
简单写一下:1.取CD中点E,连ME、NE易证ME∥AD,NE∥PD(中位线)∴面NME∥面PAD2.梯形作FN∥BC交PB于F,连FM∵ME∥BC,NF∥BC∴ME∥NF∴四边形MENF是梯形也可以
(1)因为E,F分别是BC,AD的中点所以2EC=BC,2AF=AD又因为AD,BC平行且相等所以EC,AF平行且相等所以四边形AECF是平行四边形(2)(题目出错了吧,应该是是说明四边形ABEF是菱
过F点做DC平行线交EB于点H你想想就会发现有答案了EFHC是平行四边形,对角线互相平分
做EF//AB,交AD于F因为AB//CD,EF//AB,E为BC的中点所以F为AD的中点因为EA=ED所以中线EF⊥AD因为EF//AB所以AB⊥AD因为四边形ABCD是平行四边形所以四边形ABCD
(1)设AC∩BD=H,连接EH,∵H为平行四边形ABCD对角线的交点,∴H为AC中点,又∵M为PC中点,∴MH为△PAC中位线,可得MH∥PA,MH⊂平面MBD,PA⊄平面MBD,所以PA∥平面MB
证明:延长BE,交AD的延长线于点G∵AG∥BC∴G=∠CBE,∠GDE=∠C∵ED=EC∴△EDG≌△ECB∴DG=BC∵AD=BC∴AD=DG∵∠APG=90°∴AG=PD(直角三角形斜边中线等于
∵平行四边形ABCD,∴AD∥BC,∠APB=∠PBC,∠DPC=∠PCB(两直线平行,内错角相等),∵PB=PC,∴∠PBC=∠PCB(等边对等角),∴∠APB=∠DPC,∵P是AD中点,∴AP=D
证明:连接BD∵E是AB的中点,H是AD的中点∴EH是△ABD的中位线∴EH‖BD,EH=1/2BD同理可得FG‖BD,FG=1/2BD∴EH‖FG,EH=FG∴四边形EFGH是平行四边形
1、∵PA⊥面ABCD,∴PA⊥AC,又PB⊥面ACE,∴PB⊥AC∴AC⊥面PAB,∴AC⊥AB∵AB∥CD,∴AC⊥CD2、过B点作BG⊥面PCD,垂足为G,即三棱锥B-PCD的高为BG,由于PB
证明:取PD的中点E,连接AE,EN因为EN∥AM,EN=AM所以AMNE为平行四边形,则MN∥AE而MN⊄平面PAD,AE⊂平面PAD∴MN∥平面PAD.
如图,∵M、N是AB、CB中点,∴MN∥AC且MN=AC/2(三角形中位线定理),同理,PQ∥AC,且PQ=AC/2,∴MN∥PQ,且MN=PQ∴四边形MNPQ是平行四边形(一组对边平行且相等的四边形