如图在圆o中ab是直径,半径oc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:04:56
是不是应该求BE=CF啊?BG绝对不会=CF的,BE=CF用全等三角形就好了
连接OB,设⊙O的半径是R,∴CD⊥AB,CD过O,∴AB=2AE=2BE,AE=BE=4,在Rt△OBE中,由勾股定理得:OB2=BE2+OE2,即R2=42+(R-6)2,R=133,答:⊙O的半
(1)∠AOC=π/3×R/R=π/3(2)∵∠AOC=π/3,OA=OC,∴△AOC是等边三角形,∠CAO=π/3由△AEC≌△DEO,得∠CAE=∠ODE∴AC//OD,∴∠DOB=∠CAO=π/
1因直径AB=AP+BP=2+6=8,所以半径OA=8/2=4,OP=OA-AP=4-2=2.又角MPB=45度,故作OH垂直MN,垂足为H,三角形OHP是等腰直角三角形.OH=HP,而OH^2+PH
)∵AC^=π/3R,半圆的长是πR,∴弧AC是半圆是1/3,即弧的度数是60°,∴∠AOC=60°;
(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠
AM=4+2=6,MB=2,EC^2=DC^2-DE^2=64-15=47EC=7,设EM=xAM•MB=EM•MC6*2=(7-x)*x解得x=3,x=4,EM>MCEM=4
(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.
因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=
连接CO,设半径CO=R.则OE=OA-AE=R-4.OE^2+CE^2=CO^2,即(R-4)^2+36=R^2,R=6.5
1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就
证明:延长BF交CE于H∵OC⊥AB∴∠COA=∠COB=90∴∠ECO+∠CEO=90∵OC=OB、OE=OF∴△CEO≌△BFO(SAS)∴∠FBO=∠ECO∴∠CHB=∠FBO+∠CEO=∠EC
连接OC,∵AB是圆O的直径,P在AB的延长线上,PD切圆O于点C.圆O半径为3,OP=2,∴PB=2-3,PA=2+3,∴PC2=PB?PA=(2?3)(2+3)=1,∴PC=1.在Rt△OCP中,
连接EO,DO=CO/2=EO/2,则角DOE=60度,角AOE=30度,因此CE弧=2EA弧
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
连接BD,则角ADB=90度角ABD=角ADC=角D(同为BDC的余角)在Rt△ADB中,sinABD=AD/AB=2*5(1/2)/5cosABD=(1-cos^2ABD)^(1/2)cosABD=
AE=OE=AO三角形AOE为正三角形,角AOE=60度,角COE=30度,角FOE=120度则AE,CE,EF分别是圆O的内接六边形,正十二边形,正三角形的一边
①直径是圆中最长的弦.过点A作任一弦(不与AB重合)交圆O于点K,我们证明AK小于AB即可.连接BK,则△ABK是直角三角形,∠AKB=90°,AB是斜边,所以AB大于AK.因为对于任何不与AB重合的
)这是相交弦定理,连AC,EB,因∠CAB=∠CEB,又有对顶角故三角形AMC∽EMB,所以AM*MB=EM*MC2)在直角三角形CDE中,CE=√(CD^2-DE^2)=√(64-15)=7EM=A