如图在四边形abcd中点e为边bc的中点过点e作hg垂直

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:46:10
如图在四边形abcd中点e为边bc的中点过点e作hg垂直
如图,在平行四边形ABCD中,E、F分别为AD、AB的中点,且平行四边形ABCD的面积为1平方单位,那么四边形DEFC

假设AFE为1份,则EFD是1份EBC是2份,FDC是4份,整个ABCD是1+1+4+2=8份所以DEFC=(1+4)/8*1=5/8平方单位

如图,点O是四边形ABCD对角线AC的中点,E,F分别为AB,AD的中点,连接OE,OF得四边形AEOF与四边形ABCD

相似,因为OE//BC,OF//BC再问:怎么证出来的(还有对角线相等的两个矩形必相似吗再答:一共四个边,两个边重合,两个边平行,必相似对角线相等是什么意思,是长度相等?再问:是的对角线相等的两个矩形

如图,在四边形ABCD中,AB=CD,M,N,E,F分别为AD,BC,BD,AC的中点,求证:四边形MENF为菱形

因为M,N,E,F分别为AD,BC,BD,AC的中点所以ME=0.5AB=FN,MF=0.5CD=EN因为AB=CD所以ME=FN=EN=MF所以四边形MENF为菱形

[加赏100分]!如图,在平行四边形ABCD中,E是AD的中点,四边形ABCD的面积为1,则图中阴影部分的面积为?

C.1/6设AC交BE于O,取BC中点F,过E、F分别作△CDA、△ABC的中位线易证OE=BE/3∴S△CEO=S△BCE/3又S△BCE=S□ABCD/4=1/4∴S△CEO=1/6

如图,已知E、F、G、H分别为四边形ABCD各边中点,连EF、FG、GH、HE得到四边形EFGH称为中点四边形.

(1)连ABCD的任一条对角线,如BD,由中位线可得EFGH一组对边平行且相等,所以EFGH为平行四边形(2)由第一问可知,EFGH为平行四边形,所以当AC、BD相等时,EFGH为菱形当AC、BD互相

已知:如图,在四边形ABCD中,AD平行BC,E为CD中点,连接AE,BE,且AE垂直BE于E,求证:BE平分角ABC

过E作BC或AD的平行线EF交AB于F,由平行线等分线段定理可知,AF=BF,又三角形ABE是直角三角形,所以EF是它的斜边上的中线,由定理知EF等于斜边的一半,即BF=EF由此可知∠FBE=∠FEB

如图,在四边形ABCD中,E、F、G、H分别为各边的中点,顺次连接E,F,G,H,把四边形EFGH称为中点四边形.连接A

(1)△AEH和△CFG的面积是四边形ABCD的面积的四分之一.证明:因为E、F、G、H分别为各边的中点所以EH是△ABD的中位线,GF是△CBD的中位线.所以AE/AB=AH/AD=1/2,CF/C

如图.在平行四边形ABCD中,E为CD中点,三角形ABE是等边三角形,求证:四边形ABCD是矩形.

因为ABCD是平行四边形所以AD=BC因为三角形ABE是等边三角形所以EA=EB因为E是CD的中点所以DE=CE所以三角形ADE全等于三角形BCE所以∠D=∠C因为ABCD是平行四边形所以∠C+∠D=

如图2,已知四边形ABCD,E,F分别为AD,BC的中点,连接BE、DF,四边形EBFD与四边形ABCD的面积之比是

将BD连接形成三角形ABD和三角形CBD,分别以B、D点向AD、BC作垂线,很明显,因为E、F分别为AD、BC的中点,所以三角形BED:三角形ABD=1:2;同理,三角形BFD:三角形CBD=1:2.

如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:

(1)连结BD,AC交于O.∵ABCD是正方形,∴AO=OC,OC=12AC连结EO,则EO是△PBD的中位线,可得EO∥PB∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC(2)∵PA⊥平面

已知:如图,在四边形ABCD中,E,F分别为AB,DC的中点.求证:四边形DEBF是平行四边形两种方法解答

证明一:∵四边形ABCD是平行四边形∴AB∥CDAB=CD∵E,F分别为AB,DC的中点∴DF=CD/2BE=AB/2∴BE=DF∵BE∥DF∴四边形DEBF是平行四边形证明二:∵四边形ABCD是平行

如图F之间,在四边形ABCD中,AB//DC,E为BC边的中点,

结论:AB=AF+CF.证明:分别延长AE、DF交于点G.∵E为BC的中点,∴BE=CE,∵AB‖CD,∴∠BAE=∠G,在△ABE与△GCE中,∴△ABE≌△GCE,∴AB=GC,又∵∠BAE=∠E

如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,求证:四边形EFGH为平行四边形

连接BD∵H为AD中点,E为AB中点∴EH为△ABD中位线∴EH∥BD且EH=1/2BD∵G为CD中点,F为BC中点∴FG为△DCF中位线∴FG∥BD且FG=1/2BD∴FG∥=EH∴四边形EFGH为

如图E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是( )

联结对角线,根据三角形中位线定理,只要保证对角线互相垂直就可以

如图,在空间四边形ABCD中,AB的中点为E,DC的中点为F,证明

空间四边形可以想象成三棱锥,学习立体几何你需要学会转化.其中ABCD为空间四边形,其实就构成了一个四棱锥,做辅助线P点为AC的中点,则向量EP就等于二分之一BC,而向量PF就等于二分之一向量AD.而向

如图4,在四边形ABCD中,AB平行于DC,E为BC边的中点,角BAE=角EAF,AF与DC的延长线

结论:AB=AF+CF证明:分别延长AE,DF交于点M∵E是BC中点∴BE=CE∵AB//CD∴∠BAE=∠M在△ABE与△MCE中∠BAE=∠M∠AEB=∠MECBE=CE∴△ABE≌△MCE(AA

如图,在四棱锥P-ABCD中,四边形ABCD是菱形,PA=PC,E为PB的中点.

(1)证明:设AC∩BD=O,连接EO,因为O,E分别是BD,PB的中点,所以PD∥EO…(4分)而PD⊄面AEC,EO⊂面AEC,所以PD∥面AEC…(7分)(2)连接PO,因为PA=PC,所以AC

如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,

不对吧,连结AC,BD,应该填AC=BD,因为E、F、G、H分别是边AB、BC、CD、DA的中点,所以EF=1/2AC,FG=1/2BD,GH=1/2AC,EH=1/2BD(三角形中位线定理),又因为

如图,在平行四边形ABCD中,E,F分别为AB,CD的中点,求证:四边形AECF是平行四边形

因为AB=CD,且E.F又是中点,所以CF=AE再答:因为四边形ABCD是平行四边形,所以AB平行CD,所以CF平行AE再答:因为CF与AE平行且相等,所以为平行四边形

如图,在¢ABCD中,E,F分别为AB,CD的中点,求证:四边形AECF是平行四边形.

因为ABCD是平行四边形,所以AB=CD又因为E,F分别是AB,CD的中点,所以AB〃CD所以AB平行且等于CD所以AECF是平行四边形再答:手机写很累滴