如图在rtabc中∠acb=90,∠abc的平分线bd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:46:46
证明:∵∠A=∠BCD(均为角B的余角);∠AED=∠CDB=90度.∴⊿AED∽⊿CDB,CD/AE=BC/AD;-----------------------(1)同理相似可证:⊿ADC∽⊿DFB
角ACB=80角adc=80
证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE
(1)∵∠CDB=∠A+∠ACD且CD平分∠ACB∴∠DCB=∠ACD因为∠A=∠ACB∴∠CDB=∠ACB+∠DCB又∵∠ACB=2∠DCB∴∠CDB=3∠DCB(2)∵CE是△ABC的高∠DCE=
∵2S△abc=ab=(a+b+c)R∴R=ab/(a+b+c)∵∠C=90°∴a+b=c∴2ab=(a+b)-(a+b)=(a+b)-c=(a+b+c)(a+b-c)∴ab=(a+b+c)(a+b-
证明:过点D作DE⊥AB于E,∵DE⊥AB,∴∠AED=90°,∴∠ACB=∠AED=90°,又∵∠CAD=∠BAD,AD=AD,∴△ACD≌△AED,∴CD=ED,AC=AE,∵∠ACB=90°,A
(1)∠BAC=∠BDC=60°(同弧所对的圆周角相等);(2)∠ABC=180°-∠BAC-∠ACB=60°,∴△ABC是等边三角形,作OE⊥AC于点E,连接OA,则OA平分∠BAC,∴∠OAE=3
设时间为x则面积S=1/2(8-1.5x)2x解得x=2/3(31^0.5-4)其中"31^0.5"为31开方
∵△A1B1C为△ABC旋转所得∴△A1B1C≌△ABC∴∠B1A1C=∠A∵∠ACB=90°,CM是斜边AB上的中线∴CM=AM∴∠A=∠MCA,∠MCA+∠A1CB=90°∴∠B1A1C+∠A1C
证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠
(1)DE为中位线→DE‖BF→∠AED=90°→DE为三角形ACD的高线——aE为中点→DE为三角形ACD的中线——b综合a,b→三角形ACD为等腰三角形,AD=CD→∠A=∠ACD∠CEF=∠A→
延长BC至E,使CE=AD,连结DE.∵AD∥BC,∴四边形ACED是平行四边形,∴AC∥.DE,∴∠ACB=∠DEB,∵AC=BD,∴BD=DE,∴∠DBC=∠DEB,∴∠DBC=∠ACB.
Rt△ABC中,∠ACB=90°,M是AB边的中点所以AM=CM=BM∠CAB=∠ACM∠CAB=90-∠ABC∠BCH=90-∠ABC所以∠CAB=∠BCH所以∠BCH=∠ACM有CD平分,∠ACB
没图再问:再答:P运动到AC中点时AP=BCPQ=AB∠A=∠C那么三角形,△ABC≌△QPAP运动到C点时即PC重合时AP=ACPQ=AB∠A=∠C那么三角形,△ABC≌△QPA再问:再详细点再答:
过点D,作DH//CF,因为D是BC的中点,所以FH=BH,又因为E是AD的中点,所以AF=FH在直角三角形ACD中,E是斜边AD的中点,CE是斜边上的中线,所以有:CE=AE=ED又因为FG//AC
证明1:在△ABC和△CDA中∵AD=BC,∠ACB=∠CAD,AC=AC,∴△ABC≌△CDA (SAS).∴AB=CD.证明2:∵∠ACB=∠CAD,∴AD∥BC.∵AD=B
(1):∵在△ACB中:∠A=∠ACB又∵CD为△ACB的角平分线∴∠A=∠ACB=2∠ACD=2∠DCB∵∠A+∠ACD=∠CDB2∠ACD+∠ACD=∠CDB3∠ACD=∠CDB∴∠CDB=3∠D
(1)∵∠1+∠BCD=90°,∠1=∠B∴∠B+∠BCD=90°∴△BDC是直角三角形,即CD⊥AB,∴CD是△ABC的高;(2)∵∠ACB=∠CDB=90°∴S△ABC=12AC•BC=12AB•
(1)作DP⊥BCAQ⊥BC∵AB=3根号2,∠A=90,∠ABC=45度∴等腰RT△ABC且BC=6∴AQ=3∵D是AB中点∴DP=1/2AQ=2/3S=1/2BE*DP=1/2t*3=3/2t∴S
CD平分角ACB,角ACB=90度,则角ECB=45度M为AB中点,则AM=CM=BM,角MCB=角MBC则角MCE=角MCB-角ECB=角MBC-45度角DEM=角CEB=180-角ECB-角MBC