如图_抛物线y等于四分之一x平方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:07:52
按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-
y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P
因为:x>0,y>0所以:x+y≥2√xy√xy≤2分之(x+y)因为:x+y=1所以:√xy≤2分之1xy≤4分之1很高兴为你解答,祝你学习进步!一刻永远523为你解答~~如果你认可我的回答,请点击
依题意,解得抛物线与X轴的交点坐标为(-1,0)和(3,0),C(0,-3),D(1,-4),因为没有图,所以分两种情况(1)当A(-1,0)时,设P点坐标为(1,m),连接AP交Y轴于点E,则E点的
第一个空是(向上)因为a=4>0∴向上第二个空是(0,0)∵y=ax方的顶点就是(0,0)当然代入顶点坐标公式也行(麻烦)第三个空是(x=0)第四个空是(向上)同一五空是(0,0)同二⑥空是(x=0)
(3x-2y+四分之一)^2=(3x-2y)^2+1/2(3x-2y)+1/16=9x^2-12xy+4y^2+3/2x-y+1/16
容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=
变成4\1Y+X=1416Y+4\1Y=14
Y=X^2-(K+1)X+K,令Δ=(K+1)^2-4K=(K-1)^2=0,得K=1,∴当K=1时,抛物线与X轴只有一个公共点.∵ΔAOC∽ΔCOB,∴OA/OC=OC/OB,∴OC^2=OA*OB
由于对称轴方程为x=-b/2a,所以得到-b/2a=-3,再由题中可知a=1,所有可求得b=6,之后再把点A(-4,-3)带入方程中,可求得c=5,所以抛物线解析式为y=x2+6x+5.ps:图画错了
关于y轴对称时偶函数∴令y=y,x=-x∴y=2/3x2-16/3x+8
根为3和-1再问:���再问:�ܽ����再答:再答:�в��У�����再问:���������再答:���������ʵ���再答:��ʽ�ֽⷨ��һԪ���η���再问:������再答:���
x1+x2=-4x1*x2=-c所以(x1-x2)^2=(x1+x2)^2-4x1x2=16+4cAB的长度即两个根的差的绝对值,即:二次根下(16+4c)x2=n代入方程有:c=n^2+4n所以16
当x不等于-1时
两方程式联立求解即可:y1=3/4x-1y2=-1/4x^2解得A(-4,-4)B(1,-1/4),两点距离=25/4
1)将A(1,0),B(-3,0)代入,得,-1+b+c=0,-9-3b+c=0,解得b=-2,c=3所以抛物线为y=-x²-2x+32)△ACQ的周长为CQ+AQ+AC,其中AC不变所以当
∵点A的横坐标为-1,∴y=12×(-1)2=12,y=-14×(-1)2=-14,∴点A(-1,12),B(-1,-14),∴AB=12-(-14)=34,根据二次函数的对称性,BC=1×2=2,阴
y=-x²+x+2,那么半个周长=x+y=-x²+x+2+x=-x²+2x+2=-(x²-2x+1)+3=-(x-1)²+3,所以当x=1时周长最大,
求△=-16a因为有ab两交点所以a
解题思路:利用二次函数的性质求解。解题过程:过程请见附件。最终答案:略