如图_抛物线y等于四分之一x平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:07:52
如图_抛物线y等于四分之一x平方
如图,抛物线y=-x平方+bx+c与x轴交与A(-1,0)B(-3,0)两点求该抛物线解析式该抛物线

按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-

如图,抛物线y=x平方-2x-3,抛物线与x轴交予A,B两点A在左

y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P

已知x+y=1,求证xy小于等于四分之一

因为:x>0,y>0所以:x+y≥2√xy√xy≤2分之(x+y)因为:x+y=1所以:√xy≤2分之1xy≤4分之1很高兴为你解答,祝你学习进步!一刻永远523为你解答~~如果你认可我的回答,请点击

已知,如图,抛物线y等于x2减2x减3的图像与x轴交与AB两点,与y轴交于点C,顶点D,对称轴与x轴交与K ,在对称轴上

依题意,解得抛物线与X轴的交点坐标为(-1,0)和(3,0),C(0,-3),D(1,-4),因为没有图,所以分两种情况(1)当A(-1,0)时,设P点坐标为(1,m),连接AP交Y轴于点E,则E点的

抛物线y=4x方中的开口方向是( ),顶点坐标是( ),对称轴是( ).抛物线y=-四分之一x

第一个空是(向上)因为a=4>0∴向上第二个空是(0,0)∵y=ax方的顶点就是(0,0)当然代入顶点坐标公式也行(麻烦)第三个空是(x=0)第四个空是(向上)同一五空是(0,0)同二⑥空是(x=0)

(3x-2y+四分之一)的平方等于多少

(3x-2y+四分之一)^2=(3x-2y)^2+1/2(3x-2y)+1/16=9x^2-12xy+4y^2+3/2x-y+1/16

如图,抛物线y=x2-2x-3与x轴交A、B两点

容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=

已知抛物线y等于x平方减k加1倍加k,试求k为何值时,抛物线与x轴只有一个公共点,如图,若抛物线与x轴交于ab两点点a在

Y=X^2-(K+1)X+K,令Δ=(K+1)^2-4K=(K-1)^2=0,得K=1,∴当K=1时,抛物线与X轴只有一个公共点.∵ΔAOC∽ΔCOB,∴OA/OC=OC/OB,∴OC^2=OA*OB

如图,抛物线y等于x的平方加bx加c过点a(负4,负3),与y轴交于点B,对称轴是x等于负三,请解答下列问题:

由于对称轴方程为x=-b/2a,所以得到-b/2a=-3,再由题中可知a=1,所有可求得b=6,之后再把点A(-4,-3)带入方程中,可求得c=5,所以抛物线解析式为y=x2+6x+5.ps:图画错了

如图,抛物线y=-x²+2x+3,交x轴

根为3和-1再问:���再问:�ܽ����再答:再答:�в��У�����再问:���������再答:���������ʵ���再答:��ʽ�ֽⷨ��һԪ���η���再问:������再答:���

如图,抛物线y=-x²-4x+c(c

x1+x2=-4x1*x2=-c所以(x1-x2)^2=(x1+x2)^2-4x1x2=16+4cAB的长度即两个根的差的绝对值,即:二次根下(16+4c)x2=n代入方程有:c=n^2+4n所以16

直线y等于四分之三x减一于抛物线y等于负四分之一x的平方交于A,B两点,A在B的左侧,与Y轴交与点,求线段A,B...

两方程式联立求解即可:y1=3/4x-1y2=-1/4x^2解得A(-4,-4)B(1,-1/4),两点距离=25/4

如图,抛物线y等于负x的平方加bx加c与x轴交于a,b两点 求该抛物线的解析式?

1)将A(1,0),B(-3,0)代入,得,-1+b+c=0,-9-3b+c=0,解得b=-2,c=3所以抛物线为y=-x²-2x+32)△ACQ的周长为CQ+AQ+AC,其中AC不变所以当

(2013•长春一模)如图,抛物线y=x2,y=12x

∵点A的横坐标为-1,∴y=12×(-1)2=12,y=-14×(-1)2=-14,∴点A(-1,12),B(-1,-14),∴AB=12-(-14)=34,根据二次函数的对称性,BC=1×2=2,阴

如图,P是抛物线y=-x的平方+x+2在第一象限

y=-x²+x+2,那么半个周长=x+y=-x²+x+2+x=-x²+2x+2=-(x²-2x+1)+3=-(x-1)²+3,所以当x=1时周长最大,

如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a

解题思路:利用二次函数的性质求解。解题过程:过程请见附件。最终答案:略