如图m为圆o内一点,利用尺规作 详细解答
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:21:56
写反了吧AC+BC>OA+OB证明:延长BO交AC于D∵BC+CD>BD,AD+OD>OA∴BC+CD+AD+OD>BD+OA∴BC+AC+OD>OD+OB+OA∴AC+BC>OA+OB数学辅导团解答
连接OD在△OAD中已知角OAD=45°OA=3OD=6可用余弦定理解出AD所以AC=根号2倍的AD所以OC=AC-0A以上为基本思路仅供参考再问:能不能不用余弦定理
首先,由于A、B在圆上,所以AO=BO,又AM=BM,OM为公共边,所以这两个三角形完全相等,所以∠OMA=∠OMB=90°,所以只要画出以M为垂足的,垂直于OM的弦即可,这就是满足要求的AB.如图:
连接OM交圆O于点B,延长MO交圆于点A,过点M作弦CD⊥AB,连接OC∵过圆O内一点M的最长的弦长为10厘米,最短的弦长为8厘米,∴直径AB=10厘米,CD=8厘米∵CD⊥AB∴CM=MD=12CD
证明:(1)连OM,过O作ON⊥CD于N;∵⊙O与BC相切,∴OM⊥BC,∵四边形ABCD是正方形,∴AC平分∠BCD,∴OM=ON,∴CD与⊙O相切.(2)∵四边形ABCD为正方形,∴AB=CD=1
延长BO交AC于DAB+AD>BO+ODOD+DC>OCAB+AD+OD+DC>BO+DO+OCAB+AD+DC>BO+CO即AB+AC>BO+CO
连接OM,过M作OM的垂线,交圆O于A、B,则如你题目要求.
证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.
步骤:1、作⊙O,在⊙O任做点M;2、连接OM;3、过点M作OM的垂线AB,交⊙O于点A、点B.
连结CO交AE于点F,则OF=3,EF=EA=4,CF=2且CO垂直AE∴AC=CE=2根号5∵∠CAE=∠CBE做MH垂直BE则△CAF全等△MBH(6-x)/x=2/4x=4所以MH=2S△BEM
证明:延长AO交BC于D∵AC+CD>AD,BD+OD>OB∴AC+CD+BD+OD>AD+OB∵CD+BD=BC,AD=OA+OD∴AC+BC+OD>OA+OD+OB∴AC+BC>OA+OB数学辅导
o是哪个对角线上的点!应该是对角线AC上的一点吧!由于是正方形对角线AC上的点则O到BC和DC的距离是一样的.这个圆和BC相切,当然也和CD相切了
多思考,八年级应该做的出来
过O、M做一条直线OM以点M位圆心,任意长为半径作圆弧与OM交两点E,F以E,F为圆心,大于AM的任一长度为半径作弧.两弧相交于G,H两点,过G.H做直线,直线与圆的交点就是所求AB两点.
△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD
(1)①OP=根号(5²-4²)=3②OQ=根号(5²-3²)=4因为两条弦平行所以O、P、Q三点共线(2)同理,OQ=4,所以PQ=1或PQ=7(3)相等,发
主要过程分两步:(1)确定圆心:在圆周上任意取三点N、P、Q,作MN、MP垂直平分线具体操作如下:以N、P为圆心,大于NP/2长为半径画弧,两弧交于两点,过这两点作一条直线即为NP垂直平分线以N、Q为
(1)连接AO、BO、PO,则OA⊥AP,OB⊥BP.在RT△AOP中,AO=8cm,PO=16cm,所以,∠APO=30°.同理,∠BPO=30°.因此,∠APB=60°.(2)连接OM、OE、OF
从点O引垂线至CD,垂足为点N,即交于CD上点N;在三角形OCM和三角形OCN中,因为角COM=角CON=90度,角ACB=角ACD,OC=OC,所以三角形OCM和三角形OCN全等;所以ON=OM=圆