如图abc,P是圆O上的五个点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:04:31
如图abc,P是圆O上的五个点
如图,A,P,B,C是圆O上的四个点,∠APC=∠CPB=60°.判断△ABC的形状,并证明你的结论.

等腰三角形请采纳答案,支持我一下.再问:过程过程啊!!!过程呢???

如图,A,P,B,C,是圆O上的四个点,角APC=角CPB=60°.判断△ABC的形状,并证明你的结论.

△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是弧BC所对的圆周角,∠ABC与∠APC是弧AC所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠

如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B

开始移动时,x=30°,移动开始后,∠POF逐渐增大,最后当B与E重合时,∠POF取得最大值,则根据同弧所对的圆心角等于它所对圆周角的2倍得:∠POF=2∠ABC=2×30°=60°,故x的取值范围是

已知,如图,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,探索:PA,PB,PC的关系

PA=PB+PC.理由: 在PA上截取PD=PB,连接BD,∵ΔABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∴∠P=∠C=60°,∴ΔPBD是等边三角形,∴PB=BD,∠PBD

如图,三角形ABC的三个顶点都在圆O上,AB=AC,点P是弧AB的中点,角BPC=60度,连接PA,PB,PC.求证:A

证明:∵∠BPC=60°∴∠BAC=60°(同弧所对圆周角相等)∵AB=AC∴△ABC是正三角形(两边相等且夹角为60°的三角形是正三角形)∵P是AB弧中点∴PA=PB(在同圆中,等弧对等弦)又AC=

如图,在等边三角形ABC,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连结OP,在角POD=60°,使OD

因为op=od且角pod=60度所以三角形opd为等边三角形(画图)角A+角APO-60度(角A)=角POC-60度(角POD)=角DOC因为角APO=角DOCOD=OP角A=角C三角形OCD全等于三

如图ABC是圆O上的三点 P是劣弧AB上的一个动点 P与点AB不重合,角APC=角CPB=60度

如图∵∠APC=∠CPB=60º,∴弧AC=弧BC,∴AC=BC,∠ACB=60º,因此⊿ABC是等边三角形,∴AB=AC;∠BAC=60º,在PC上截取PD=PA,连接

如图,圆O的半径为1,点P是圆O上一点,弦AB垂直平分线段OP

设ac切圆d于点g,bc切圆d于点f,连接df,fg,ad,bd,cd则有s=s△agd+s△aed+s△cdf+s△sgd+s□bedf因为s/de²=4根号3所以4根号3*de²

1)已知:如图1,三角形ABC是圆O的内接正三角形,点P为弧BC上一动点,求证PA=PB+PC

以P为圆心,PB为半径画圆,交AP于D,连接BD则:△PBE为正三角形即:PD=PB∵∠ADB=180-60=120º,∠CPB=60+60=120º∴∠ADB=∠CPB 

已知三角形ABC,点P是平面ABC外一点,点o是点p在平面ABC上的射影,且点o在三角形ABC内

一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心

如图,圆p和圆o相交于AB两点,点p经过点o,c是圆p的优弧AB上的任意一点,弦OC交公共弦ab于点d,连接CA,CB

本题:圆O与圆P相交于A、B两点,则:OP垂直平分AB(证明方法是:连接OA、OB、PA、PB因为OA=OB,PA=PB、PO公共所以,△PAO≌△PBO(SSS)所以,∠APO=∠BPO而在△PAB

如图,圆O是Rt△ABC的外接圆,∠ABC=90度,点P是圆外一点,PA切圆O于点A,且PA=PB(1)求证:PB是圆O

圆心为O连结OP,OB.可得因为是圆的半径,所以OA=OB已知,PA=PB,且共用边OP.得出,三角OPA全等于,三角OPB,推出,角OBP是90度,推出PB是圆O的切线.

如图,圆O的内接三角形ABC中,AB=AC,D是圆O上的一点,AD的延长线交BC的延长线于点P,

第一个问题:求DC的长.作直径AE,连结CE,再过D作DF⊥AE交AE于F,令AE与BC的交点为G.∵AE是直径,∴AC⊥CE.∴由勾股定理,有:CE=√(AE^2-AC^2)=√(AE^2-AB^2

如图,A,P,B,C是圆O上的四个点,角APC=角CPB=60°,判断三角形ABC的形状,并证明

等边三角形再答:采纳吗再答:证法要吗再答: 

如图,三角形ABC的顶点都在圆O上,点P在圆O上,且∠APC=∠CPB=60°,那么△ABC是等边三角形吗?为什么?

△ABC是等边三角形因为同一条弧所对的圆周角相等角BPC=BAC=60角APC=ABC=60所以角ACB=60

如图,∠ABC=90°,AB=BC,点O是AC的中点,点P是斜边AC上的动点,PB=PD,DE垂直AC于点E,求证:PE

连接OB∵∠ABC=90°,AB=BC∴△ABC是等腰直角三角形∴∠A=∠C=45°∵O是斜边AC的中点∴BO⊥AC,即∠POB=90°OB=AO=CO∵DE⊥AC即∠DEC=∠DEP=90°∴∠ED

已知:如图等边三角形ABC内接于圆O点P是弧BC上,求证:PB+PC=PA

证明;∵⊿ABC是等边三角形∴AB=AC=BC,∠ABC=60º在PB的延长线上截取BD=PC,连接AD∵ABPC四点共圆∴∠ABD=∠ACP又∵BD=PC,AB=AC∴⊿ABD≌⊿ACP(