如图11已知CD是△ABC的角平分线∠1=∠2∠B=42°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:10:08
一定要勾股定理么.这分明是射影定理的逆向证明.由CD是AB边上的高∴△CDA与△CDB是直角三角形∴CD²+AD²=AC²,CD²+BD²=BC
你要想到:角CAD是△ABC的外角△ABC是等腰三角形.∠ABC=∠ACB=15°所以∠CAD=30°.斜边AC=20.CD是斜边所对的直角边等于斜边的一半CD=10再问:CDΪʲô��б�ߵ�һ�룿
证明:过A作CB平行线,交CD延长线于F∵CN=MN∴∠1=∠3=∠4(等边对等角、对顶角)又 AF//CB∴∠1=∠F(内错角相等)∴∠4=∠F∴AM=AF(等角对等边)∵CD是△ABC的
过A作CB平行线,交CD延长线于F,使得AF//CB因为CN=MN所以角MCN=角CMN=角AMD又因为AF//CB由两直线平行,内错角相等角MCN=角AFD故角AFD=角AMD所以AM=AF下面再证
∵∠ABC=∠ACB=15°∴∠CAD=∠ABC+∠ACB=30°∵CD⊥AB∴在RT△BCD中∠CAD=30°CD=1/2AC=a
∠CFE=∠CAF+∠ACD=∠CAF+(90°-2∠CAF)=90°-∠CAF在三角形CAE中∠CEF=90°-∠CAF
EF=1/2ABCD=1/2AB所以CD=EF
(1)相等角A=BCDB=ACD三个直角相等(2)相似三角形ABCACDCBD三个三角形相互相似(对应边的关系已给出)原因:三个角对应相等再问:能不能原因再详细一点啊?好的给高分~!谢谢~!再答:楼下
证明:1、∵∠ACB=90∴∠CAB+∠B=90∵CD⊥AB∴∠CAB+∠CAD=90∴∠CAD=∠B∵AE平分∠CAB∴∠CAE=∠BAE∵∠CFE=∠CAD+∠CAE,∠CEF=∠B+∠BAE∴∠
因为△ABC是直角三角形,CD是斜边AB上的中线,所以CD=1/2AB所以AB=4sinB=AC/AB=3/4
因为CD²=AD×BD所以CD/AD=BD/CD所以RT△CDA∽RT△BDC所以∠ACD=∠CBD又因为∠CBD+∠DCB=90°所以∠ACD+∠DCB=∠ACB=90°得证.再问:要利用
这么简单的问题:在圆内弧bc对应的∠A=∠E,∠ADC=∠BCD=90°,所以△ADC∽△BCD,∵AC/CD=BE/BC,∴AC×BC=BE×CD;∵△ADC∽△BCD,AD/CD=1/2,∴EC/
证明:延长CA到E,使AE=AD,连接ED∵AE=AD,∴∠E=∠ADE,∴∠CAD=∠E+∠ADE=2∠E,∵∠CAD=∠2∠B∴∠E=∠B,∠ECD=∠BCD,AD=AD∴△ECD≌△BCD∴BC
证明:在BC上取CE=AC,连接DE因为CD是角平分线所以∠ACD=∠ECD又因为CD=CD所以△CAD≌△CED(SAS)所以AD=DE,∠A=∠CED因为∠A=2∠B所以∠CED=2∠B因为∠CE
结合图像自己对照证明:在BC上取点E,使CA=CE所以△ACD全等于△ECD(SAS)所以:角A=角CED因为:∠A=2∠B所以:∠CED=2∠B又因为:∠CED=∠B+∠BDE所以:∠B=∠BDE所
证明:在BC上取一点E,使得CE=AC因为CD=CD,角ACD=角DCE所以三角形ACD全等于三角形ECD所以AD=DE,角A=角DEC因为角DEC=角B+角BDE,角A=2角B所以角B=角BDE所以
∵∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠BCD=90°,∵BD=CD,∴∠B=∠BCD,∴∠A=∠ACD(等角的余角相等),∴AD=CD.
1,以CD为半径,A、B、C为圆心画圆,⊙A、⊙C交于M、N,⊙B、⊙C交于P、Q连接MN、PQ,MN交PQ于O,以O为圆心,OC为半径画圆,⊙O即为△ABC的外接圆2,作OE⊥AC于E,延长OE交⊙
根据已知条件可知直角三角形adc和bdc的直角边对应成比例,对直角三角形来说两边成比例第三边也成比例如△ABC三边为abc成为斜边另一个直角三角形三边满足为akck以为a²+b²=
证明:∵CD²=ADXBD∴△CDA∽△BDC∴∠ACD=∠B又∠CDB=90°∴∠BCD+∠B=90°∴∠BCD+∠ACD=90°∴△ABC是直角三角形