如图1,抛物线y=x²-4x与x轴交于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:07:51
按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-
由A(-4,0,)B(1,0)可得y=(1/2)x^2+1.5x-2,当x=0时,y=-2,则C:(0,-2)①当AE=AC时,AE=AC=根号下((-4)^2+(-2)^2)=2根号5,因为A:(-
y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P
记得拆那我啊……)我在《求解答网》帮你找到原题哦.以后不会的问题,就直接去求解答网,方便快捷,答案还详细.
1.当x=k+1时,二次函数取最小值,为-k^2+2k-1.2.抛物线方程y=x^2-2(k+1)x+4k=(x-2)(x-2k),假如B为(2,0),直线通过该点,则得2k+2-k/2=0,k=-4
令y=0,的x=4或-2(舍去),故A(4,0)同理令x=0得y=4,故B(0,4).则直线ABx+y-4=0.(2)由题可得,要使直线AB与该正方形相加,只需直线AB与线段PQ有交点,(lz学过线性
抱歉,据本人估计,题目不全!
x=7.5,y=+2.25或x=7.5,y=-2.25
(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点
再问:第三问的P点是怎么求出来的啊,那个算的过程我不太懂,不好意思·····再答:刚看见当时写错了可以这么说,AB的长已经确定了,我们把AB当做底,只要求出在AB上的高,就可以求出面积了,现在要求面积
容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=
第一个问题很简单联立两个方程就可以得到焦点坐标,然后再求出线段长度即可.第二个问题用不等式求解从第一问可以得出扇形的周长,且为常数.设出扇形的半径,可由半径即周长得出扇形的半径夹角,由此可以得出扇形面
(1)y=x²-4x+3=(x-2)2-1.抛物线顶点坐标:(2,1)(2)抛物线与X轴相交A、B两点;另y=0,即x²-4x+3=0,解方程的x=1或3;由此可知A、B坐标为(1
(1)y=-1/4x²-2x=-1/4(x+4)²+4,确定三点坐标A(-4,4),B(-8,0),O(0,0),很容易得出△AOB为等腰RT△(2)FG=3/2是不是不对,否则根
抛物线y=a(x-1)^2+4与x轴交于A(1-√(-4/a),0),B(1+√(-4/a),0),顶点D(1,4),对称轴与x轴交于E(1,0),由AB=DE得2√(-4/a)=4,∴-4/a=4,
最好能给出抛物线开口方向
A(4,0)B(-2,0)C(0,4)先求得BC方程:y=2x+4则作BC中垂线EG交BC于E,得点E为(-1,2),EG⊥BC,所以斜率相乘得-1,则EG斜率为-1/2将E点代入得EG方程,y=-1
分析:(1)根据题意得点A的坐标是将x=1代入即可,根据对称性可得点B的坐标,即可得OB的解析式,与二次函数的解析式组成方程组即可求得点D的坐标;(2)当四边形ABCD的两对角线互相垂直时,由对称性得
易得:A(1,0)、B(6,0),C(0,4),顶点坐标:(7/2,-25/6),S=1/2OA*|2/3X^2-14/3X+6|=-1/3X^2+7/3X-3(1再问:是否存在点E,使△OEA为等腰
可能不清晰,但是不会影响阅读