如图1 直线mn与直线ab cd分别
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:22:33
(1)①△BAE≌△DAG.理由如下:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG.∴
(1)①△BAE≌△DAG.理由如下:∵四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG。∴
MN应该是AC和A1D的公垂线吧因为MN⊥A1D,A1D//B1C,所以MN⊥B1C又MN⊥AC,AC交B1C于C点所以MN⊥平面AB1C边接BD,可知BD为BD1在面ABCD上的射影,DB⊥AC所以
取BB1的中点E,连接ME、NE,因为EM=EN=MN,所以△EMN是等边三角形,所以∠EMN=60°,因为EM//QP,所以直线MN与PQ所成角,就等于直线MN与EM所成的角,即∠EMN,故直线MN
(1)答:∵角1和角2互补,角MFD和角2互补,∴角1=角MFD(同位角相等)∴AB和CD平行(2)答:∵AB和CD平行∴∠BEF+∠EFD=180°又∵角BEF与角EFD的角平分线,交与点P∴∠PE
抱歉!原题不完整,无法直接解答.请审核原题,追问时补充完整,
作CD‖AF∵EF‖MN∴CD‖MN∴∠FAC=∠ACD∠NBC=∠DCB∵∠ACB=∠ACD+∠DCB∴∠ACB=∠FAC+∠NBC点C不在EF与MN之间时,请直接写出∠FAC、∠NBC,∠ACB之
∠1=∠2.(3分)理由:∵∠3=∠4,∴AB∥CD.(6分)∴∠1=∠2.(9分)
∠AEB的大小不变∵直线MN与直线PQ垂直相交于O∴∠AOB=90°∴∠OAB+∠OBA=90°∵AE、BE分别是∠BAO和∠ABO角的平分线∴∠BAE=1/2∠OAB,∠ABE=1/2∠ABO∴∠B
(1)有4对全等三角形.分别为△AMO≌△CNO,△OCF≌△OAE,△AME≌△CNF,△ABC≌△CDA;(2)证明:∵OA=OC,∠1=∠2,OE=OF,∴△OCF≌△OAE.∴∠EAO=∠FC
已知D是正方形ABCD上的顶点;G是正方形AEFG上的顶点,连接DG,得△ADG,与直角三角形ABE相比较可知,AD=AB,AG=AE,∠BAE=∠DAB-∠EAD=90°-∠DAE而∠DAG=∠GA
再问:依据和结论呢?
证明:(1)由折叠可知,∠CMN=∠NMCCN//BM∠NMC=∠CNM因,∠CMN=∠NMC∠NMC=∠NMC在三角形CMN中,∠NMC=∠NMC所以CM=CN(2)过点N作NH⊥BC于点H,则四边
解题思路:一次函数的图像解题过程:同学你好,如对解答还有疑问,可在答案下方的【添加讨论】中留言,我收到后会尽快给你答复。还请给打个满分!感谢你的配合!祝你学习进步,生活愉快!最终答案:略
以MN为对称轴为y轴,BC为x轴建立坐标系,由已知题目得C为(1,0)D为(1/2,根号3/2),因为当PC+PD点最短时,P在CD的垂直平分线l上,CD斜率为-根号3,因此垂直平分线l斜率为-根号3
由题意此梯形为等腰梯形,根据对称性PC=PB所以PC+PD=PB+PD而要求PB+PD的最小值即P、B、D三点共线即BD的长为所求最小值根据余弦定理可以算出BD^2为3应该能看懂吧再问:什么叫余弦定理
证明:∵正方形ABCD∴BC=DC,∠BCD=90∴∠BCE+∠DCF=180-∠BCD=90∵BE⊥MN,DF⊥MN∴∠BEC=∠DFC=90∴∠BCE+∠CBE=90∴∠CBE=∠DCF∴△BCE
连接BP,因为梯形ABCD关于MN对称,所以,BP=PC,△ABD是等腰三角形,∠A=120°,过点A作AE⊥BD于E,在Rt△AEB中,∠ABE=30°,∴AE=12AB=12,由勾股定理得:DE=
AF和直线DE是平行关系∠MFD=180°-∠2∠1=180°-∠2所以∠MFD=∠1AB//CD接着∠DEB=∠D(内错角)=∠A(已知条件)∠DEB=∠A所以AF//CD