如图,设E,F分别是三角形ABC的边AC,AB上的点,线段BE,CF交与点D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:15:32
(两三角形全等的概念为两个三角形除相似外,还要大小相等).根据题意分析图形知,AB∥EF,BC∥DE,AC∥DF; 由
由DE//BC可知,角ADE=角ABC由DF//AC可知,角BDF=角BAC又因为角B=角B所以三角形ADE相似于三角形DBFAAA定理
作BC和CD边上的高FM和EN.S(三角形FBC)=1/2*BC*FM,S(三角形ECD)=1/2*CD*EN,S(平行四边形ABCD)=BC*FM=CD*EN,所以S(三角形FBC)=S(三角形EC
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
等腰三角形,利用中位线原理可得ef=1/2*AB=adde=1/2*AC=afab=ac得到af=dead=ef所以为菱形
三角形BDE和三角形CFE面积相等我就不解释了.三角形BDE和三角形ADE也是相等的,因为两三角形底相等,AD=BD,且高也相等,都是过E做AB的垂线就是高,根据面积公式就知道底高都相等面积一定相等了
存在.角BDE=180-角B-角BED角FEC=180-角DEF-角BED因为角B=角DEF所以角BDE=角FEC又因为AB=AC所以角B=角C又因为BD=CE所以根据角边角三角形FEC全等于三角形B
是求S△DEF吗?如下:S△AEF:S△ABC=1/4(△AEF的高和底分别是△ABC的高和底的1/2),同理S△BDE:S△ABC=1/4,S△CFD:S△ABC=1/4,所以S△DEF=(1-1/
对称中心就是DEF=.=作三角形中线并延长一倍就行了.
答:(1)四边形ADEF是平行四边形,因为EF与AB平行、DE与AC平行,所以是平行四边形.(2)角DEF是角BAC,角EDF是角ACB,角DFE是角ABC,因为角EDF与角AFD相等,角AFD与角A
这题你要想到,S△DEF=SABCD-S△DFC-S△DAE-S△BEF①问题就能迎刃而解了AD=60=AB,DC=BC=26,BE+BF=42,所以设BE=x所以BF=42-x,所以CF=BC-BE
连接ADS△BDC:S△CDE=7:7=1:1BD=DES△BDF:S△BDC=3:7FD:CD=3:7设S△ADF=x.S△ADE=yS△ABD:S△ADE=BD:DE=1:1x+3):y=1:1y
在平面内,作某一图形,比如ΔABC关于某一点O的中心对称的另外一个图形ΔA′B′C′,方法是:找出图形上的确定点(在同一坐标系中,如果一个图形中的某些点被确定坐标后,这个图形就确定了,这些点就称为确定
雷楚梅再问:什么再问:怎么做
三角形abc为等边三角形.因为点e与点f分别是ab和ac的中点,所以,ae=be=af=bf,又因为三角形abc为等边三角形,且ad垂直于bc,所以∠a=∠b=∠c=60°连接e,d;f,d.此时,a
作BC和CD边上的高FM和EN.S(三角形FBC)=1/2*BC*FM,S(三角形ECD)=1/2*CD*EN,S(平行四边形ABCD)=BC*FM=CD*EN,所以S(三角形FBC)=S(三角形EC
D,E,F,分别是AB,BC,CA的中点DE和EF是三角形的中位线,DE=AC/2,DE‖AC,四边形ADEF是平行四边形,又AB=AC,AB/2=AC/2,DE=EF,∴四边形ADEF是菱形.
作辅助线AP,因为D,E,F,G分别是PB,PC,AC,AB上的中点在三角形PBC中,DE//BC,同理在三角形ABC中,FG//BC所以DE//FG;在三角形APC中,AP//EF;在三角形APB中
如果不差条件的话DEFG是平行四边形但不一定是矩形.①是平行四边形:由三角形中位线定义可知DE为△BPC中BC的中位线,FG为△ABC中BC的中位线,由三角形中位线性质有DE∥BC且长度为BC的一半,