如图,等边三角形abc绕点C旋转120°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:24:51
MNC是不是等边三角形 取决于MN 2个点在哪?.不知道你想问什么
由题意角C=60°,AC>BC不可能三角形CAB是等边三角形
1、以A点为中心,旋转;2、60度3、AC的中点
∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠BCD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∠CBD=∠CAE
证明:①∵△ABC和△DCE都是等边三角形∴AC=BC,CE=CD∠ACB=∠DCE=60°则∠BCD=∠ACE=120°∴△BCD≌△ACE(SAS)∴AE=BD②∵△BCD≌△ACE∴∠BDC=∠
∵AD=BE=CF,AB=AC=BC∴AB-AD=BC-BE=AC-CF∴BD=CE=AF⊿BED⊿CFE⊿ADF中∵BD=CE=AF,∠A=∠B=∠C=60°,BE=CF=AD∴⊿BED≌⊿CFE≌
是等边三角形.证明△MCD与△CNE全等就行了先证明△ADC与BCE全等然后根据SSS求MCD与CNE全等就晓得△MCN等边了
证明∵△ABC与△CDE都是等边三角形∴BC=ACCE=CD∠ACB=∠ECD=60°∠BCE=∠ACD∴△BCE≡△ACD∴BE=ADS△BCE=S△ACD∴点C到BE与AD的距离相等∴PC平分∠B
因为三角形BAC和DCE是等边且相似所以DCB=60所以DCA=BCE=120CE/BC=CD/CA(相似可得)所以三角形DAC和BCE相似(边角边)所以CBE=DAE又BGP=AGC所以ACB=AP
∵△ABC、△CDE都是等边△,∴∠ACB=∠ECD=60°,∴∠BCD=60°,∴AC=BC,DC=EC,∠ACD=120°=∠BCE,∴△ACD≌△BCE﹙SAS﹚,∴∠DAC=∠EBC,即∠MA
∵△ABC、△CDE都是等边△,∴∠ACB=∠ECD=60°,∴∠BCD=60°,∴AC=BC,DC=EC,∠ACD=120°=∠BCE,∴△ACD≌△BCE﹙SAS﹚,∴∠DAC=∠EBC,即∠MA
这是步骤:∵AD=BE=CF,AB=AC=BC∴AB-AD=BC-BE=AC-CF∴BD=CE=AF⊿BED⊿CFE⊿ADF中∵BD=CE=AF,∠A=∠B=∠C=60°,BE=CF=AD∴⊿BED≌
1):证明△ADC与△BCE全等,所以AM=BN2):用相同的方法证明三角形全等,因为有两个等边三角形,所以肯定有相等角为60°,所以可以证明三角形MNC是等边三角形
BC=AC,CE=CD,∠BCE=∠ACD所以得出三角形BCE和三角形ACD全等所以∠BEC=∠ADC又因为CE=CD,∠HCD=∠GCE=60度所以得出三角形HCD和三角形GCE全等因此CG=CH
(1)将三角形BOC绕点C按顺时针方向旋转60度,可知:OC=OD,∠OCD=60°(从OC旋转到OD),所以三角形COD是等边三角形(2)三角形COD是等边三角形,所以∠ODC=60°,当∠ADC=
(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QCP=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+C=6+x,∵在Rt△QCP中,∠BQD=30°
1、证明:∵等边△ABC∴BC=AC,∠C=60∵等边△CDE∴CE=CD∴AD=AC-CD,BE=BC-CE∵P是AD的中点∴PD=(AC-CD)/2∴CP=CD+PD=(AC+CD)/2同理可得:
(1)AE=DB因为△ACE与△BCD全等角DCE和角ACB都是60度,角ACD是公共角,所以角ACE=角BCD,又因为AC=BC,CD=CE,所以两三角形全等(2)旋转之后仍然成立,道理和(1)相同