如图,抛物线与=-1 2x2 bx c与x轴相交于点A(-2,0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:57:50
按图抛物线应与x轴交于(1,0),(-3,0)y=-x²+bx+c=-(x-1)(x+3)=-x²-2x+3=-(x+1)²+4C(0,3),D(-1,4)对称轴:x=-
y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P
EF=3,所以C点坐标为(0,3)抛物线经过C点,所以3=-0²+b*0+c所以c=3OF=2,EF=3,所以E点坐标为(2,3)抛物线经过E点,所以3=-2²+b*2+3所以b=
由y=-x²-2x+2,令x=0,得y=2,所以C点坐标为(0,2)又y=-x²-2x+2-(x²+2x-2)=-(x+1)²+3得抛物线的顶点坐标为(-1,3
∵A(2,-12)B(-4,0)∴直线L的解析式为:y=-2x-8则:D(x,-2x-8)过点D作DG⊥EF于点G,过点A作AH⊥x轴于H,则:△DEG∽△BAH∴DG:DE=BH:AB可求得:DG=
因为BCDE是矩形,所以D在C点上方,在E的左边.且D点和E点纵坐标相同即y=n又因为E点在直线y=2x上,所以E点横坐标为(1/2)n,所以E(1/2n,n).同理C点与D点横坐标相同,即x=m,C
答:1)y=ax^2-8ax+12a=a(x-2)(x-6)与x轴交点A(2,0)和B(6,0)设点P为(0,p),p>0依据题意:点C为(3,p/2)因为:∠PBO=45°所以:直线PB的斜率k=-
容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=
解(1):把A点的坐标代入y=2x上,得到,2a=12,a=6再把A(6,12)代入y=1/2x²+bx,解出b=-1∴抛物线的解析式为y=1/2x²-x(2):∵点C为OA的中点
解题思路:本题的关键是证明△AEF∽△DEG,设E(1,a),由相似比得关于a的方程,可得E的坐标,再求出AE的解析式,最后与抛物线的解析式联立方程组即可。解题过程:
(1)∵四边形OCEF为矩形,OF=2,EF=3,∴点C的坐标为(0,3),点E的坐标为(2,3).把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,得c=33=−4+2b+c,解得b=
关于y轴对称时偶函数∴令y=y,x=-x∴y=2/3x2-16/3x+8
抛物线看不见再问:再问:会不啊?再答:思考一下再问:快点
抛物线y=a(x-1)^2+4与x轴交于A(1-√(-4/a),0),B(1+√(-4/a),0),顶点D(1,4),对称轴与x轴交于E(1,0),由AB=DE得2√(-4/a)=4,∴-4/a=4,
解题思路:主要考查你对求二次函数的解析式及二次函数的应用,等腰三角形的性质,等腰三角形的判定,相似三角形的性质等考点的理解。解题过程:
分析:(1)根据题意得点A的坐标是将x=1代入即可,根据对称性可得点B的坐标,即可得OB的解析式,与二次函数的解析式组成方程组即可求得点D的坐标;(2)当四边形ABCD的两对角线互相垂直时,由对称性得
(1)A(3,0)B(0,-3)则c=3y=x2+bx-3当x=3,y=0时,b=-2y=x2-2x-3(2)的题目有问题吧!
1)当抛物线与X轴只有一个公共点,即只有一个交点,即顶点坐标为(X,0).可以根据已知条件,将系数代入顶点坐标公式计算.因为已经知道Y=0,所以直接代入Y的坐标可以得到一条二元一次方程式.4K-(K+
假设B是函数平移后与X轴的右交点△ABD是等边三角形,则OD=√3OB设函数Y=-X²向上平移后解析式为:Y=-X²+C此时函数与X轴交点,代入Y=0X=±√C因为C大于O,因此O