如图,抛物线y=2分之1-2x-5分之2与x轴交于点AB,与y轴交于C点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:01:50
如图,抛物线y=2分之1-2x-5分之2与x轴交于点AB,与y轴交于C点
如图,抛物线y=x平方-2x-3,抛物线与x轴交予A,B两点A在左

y=x^2-2x-3=(x+1)(x-3)=0所以,A点坐标(-1,0),B点坐标(3,0)C点坐标:x=0是的y值即,C点坐标(0,-3)假设:P(x1,y1),当顶点P或G恰好落在Y轴上时,即有P

初三数学题如图,已知抛物线y=2分之1x平方+mx+n(n不等于0)与直线y=x交于A.B两点,与y轴交与点C,OA=O

BC‖x轴.x=0,OC=-n-n=-根号下(-2n),解得n=-2抛物线的解析式为:y=1/2x2+x-2(2)DE=根号2,点D的横坐标为x,(点E在点D的上方),因此D(x,x)E(x+1,x+

如图抛物线y=2分之1x2-x+a与x轴交于AB两点,其顶点在直线y=-2x上.(1)求a的值.(2)求AB两点的坐标.

1)抛物线y=1/2x²-x+a的顶点坐标为[1,1/2(2a-1)]顶点在直线y=-2x则1/2(2a-1)=-2*12a-1=-4a=-3/22)抛物线的解析式;y=1/2x²

抛物线Y=-2分之1X的二次方+4X+3,则该抛物线的对称轴是?

y=-1/2(x²-8x+16-16)+3=-1/2(x-4)²+11所以对称轴是x=4再问:可以说的明白点吗,有点不懂,怎么样变的式子啊再答:配方没学过吗再问:你是怎么变的式子啊

如图,抛物线y=2分之1x²+bx-2与x轴交与A,B两点,与y轴交与点C,且A(-1,0),(1)求抛物线的

/>将点带入,y=1/2x²-3/2x-2,得出b=-1.5,所以y=1/2²-3/2x-2所以D(3/2,-25/8).因为A(-1,0),B(4,0),C(0,-2),故AB&

如图,抛物线y=2分之1x²-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上

1、y=1/2x²-x+a=1/2(x-1)²+a-1/2顶点:x=1y=-2x=-2∴a-1/2=-2a=-3/22、1/2x²-x-3/2=0x²-2x-3

如图,已知抛物线y=4分之1x的平方+1,直线y=kx+b经过点B(0,2)

(1)因为直线y=kx+b经过点B(0,2)所以将点B(0,2)代入直线y=kx+b有0+b=2b=2(2)因为“将直线y=kx+b绕着点B旋转到与x轴平行的位置”所以斜率k=0,直线y=kx+2变成

如图,若抛物线y=-3分之根号3x^2+bx+c过(有图)

我可以只告诉你具体的思路么?数好难算.算了半天还算错了.UPDATE:知道哪儿错了,重算orz(1)y=负三分之根号三X方+三分之二倍根号三X+根号三(2)1,存在,P(1±二分之根号十,二分之根号三

如图,把抛物线y=1/2·x²平移得到抛物线m,抛物线m经过点A(-6,0)和原点,顶点为P...

过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(-6,0),∴平移后的抛物线对称轴为x=-3,得出二次函数解析式为:y=1/2(x+3)^2+h,将(-6,0)代入得出:0=1/2(-6+3

如图,抛物线y=-x²+2x+3,交x轴

根为3和-1再问:���再问:�ܽ����再答:再答:�в��У�����再问:���������再答:���������ʵ���再答:��ʽ�ֽⷨ��һԪ���η���再问:������再答:���

如图抛物线y=a(x-1)2+4与x轴交于AB两点与y轴交于点CD是抛物线的顶点抛物线的对称轴与X轴交于eAB=DE解析

抛物线y=a(x-1)^2+4与x轴交于A(1-√(-4/a),0),B(1+√(-4/a),0),顶点D(1,4),对称轴与x轴交于E(1,0),由AB=DE得2√(-4/a)=4,∴-4/a=4,

如图,抛物线y=x^2-2mx+(m+1)^2(m>0)的顶点为A,另一条抛物线y=ax^2+n(a

设,A(x1,y1)p是A,B中点,B(0,1)x1+xB=2xp.y1+yB=2yp.得x1=2,y1=5,由B点坐标代入y=ax^2+n(a

如图,已知抛物线y =a(x-1)2+3根号3

图呢,题呢?再问:唉。。。我准备问度娘了再答:建议你用http://www.jyeoo.com/可信,标准再问:谢谢啊

如图,抛物线y1=-x²+2向右平移1个单位得到抛物线y2.

向上(1,^2)再问:不会啊,过程再问:不会啊,过程再答: 再答:刚才那里我漏了个负号再问:解析式怎么求

如图,抛物线y=x∧2-4x+1与x轴交于A,B两点,与y轴交于点C.

第一问,A(2-根号3,0)B(2+根号3,0)第二问,这里借用下高中数学必修4中的向量的知识.设圆心D的坐标为(x,y)高中教我们这样向量AD(注意有方向的)=D坐标-A坐标=(x-2+根号3,y)

如图,在平面直角坐标系中,抛物线y=1/2x*2经过平移得到抛物线y=1/2x*2-2x,其对称轴与两段抛物线所围成的阴

4y=1/2x^2-2x与y=1/2x^2一减,得到|y|=|2x|,也就是说,在0≤x≤2的范围内,阴影部分与y轴平行的长度与该长度到y轴距离是正比关系,其实阴影部分的面积就是一个底为两函数在x=2

如图,设抛物线C1:y=a(x+1)^2-5,C2:y=-a

解题思路:利用二次函数的性质求解。解题过程:过程请见附件。最终答案:略