如图,抛物线y=ax bx 3经过A(1,0),B(4,0)两点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:49:03
如图,抛物线y=ax bx 3经过A(1,0),B(4,0)两点
如图,已知二次函数y=ax2的图像经过点根号2,3/2,求抛物线函数解析式2求抛物线上的

(1)已知二次函数y=ax2的图像经过点根号2,3/2,求抛物线函数解析式y=0.75x2(2)求抛物线上的纵坐标等于3的点的坐标,x=2或x=-2(-2,3)和(2,3)(3)当x在什么范围内时,y

如图,抛物线Y=2/3X^2+bX+c的图像经过A(6.0)C(0.4)

第一问,带入数值方程可解第二问,O和A点坐标知道,与EA直线平行的直线过O点,可以写出2个直线的方程,E点到另外个直线的距离可以表示出来,长度使用EA的长度,也不难(这里注意抛物线给出了X.Y的关系)

如图,OB是矩形OABC的对角线,抛物线y=-1/3x2+x+6经过B、C两点,

(1)由C的横坐标为0,知C(0,6)(用抛物线的方程),而B与C纵坐标相同,求知B(3,6)(2)由OD=5,OE=2EB知D(0,5),E(2,4);F在直线DE上且纵坐标为0,得F(10,0).

如图1,已知抛物线y=ax2+bx(a不=0)经过A(3,0

解题思路:见解答解题过程:解:(1)∵抛物线y=ax2+bx(a≠0)经过点A(3,0)、B(4,4),∴解得:∴抛物线的解析式是y=x2-3x;把x=2,y=n代入y=x2-3x得y=-2∴D(2,

如图,点o为坐标原点,直线l经过抛物线C:y²=4x的焦点F.

二者相切抛物线:y^2=4x因此,焦点为F=(1,0)设A=(x0,y0)那么,圆的半径r=√[(x0-1)^2+(y0)^2]=√[(x0-1)^2+4x0]=(x0+1)因此,B=(1-r,0)=

如图1,抛物线y=ax^2-3ax+b经过A(-1,0),C(3,-2)

(1)y=1/2x^2-3/2x-2(2)k=-3/2(3)看不清楚呀

如图,已知抛物线y=ax²+bx+c经过A(4,0),B(2,3),C(0,3)三点.求抛物线的解析式

1、抛物线的解析式为y=-3/8x²+3/4x+3对称轴为x=12、A点关于x=1的对称点为D(-2,0),直线BD的方程为3x-4y+6=0,它交直线x=1于M(1,9/4),此点为所求

如图,把抛物线y=1/2·x²平移得到抛物线m,抛物线m经过点A(-6,0)和原点,顶点为P...

过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(-6,0),∴平移后的抛物线对称轴为x=-3,得出二次函数解析式为:y=1/2(x+3)^2+h,将(-6,0)代入得出:0=1/2(-6+3

如图,已知抛物线y=ax2+bx+c经过O(0,0)

(1)经过O,A(4,0),可表达为y=ax(x-4)经过B(3,√3):-3a=√3a=-√3/3,b=4√3/3抛物线的函数解析式:y=-√3/3(x²-4x)(2)t秒时:P(t,0)

如图,抛物线y=ax²+bx+c经过A(-1,哦),B(3,0),C(0,3)三点,对称轴与抛物线相交

1.将A,B,C三点,分别代入抛物线方程,得:0=a-b+c0=9a+3b+c3=c所以得出:a=-1,b=2,c=3∴抛物线解析式为y=-x²+2x+32.存在,Q有3个坐标设Q到直线MB

如图,抛物线y=ax²+bx(a>0)经过原点O和点A(2,0) 1.求抛物线的对称轴.2.点

1,首先抛物线过原点又过点(2,0)所以对称轴即为x=12,又a>0故而抛物线开口向上故而对于x1<x2<1有y2<y13,由题意知C(3,2)A(2,0)故而所求函数即为y=2x-4要分数急用感激万

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

如图以知抛物线y=x^2+bx+c经过矩形ABCD的两个顶点AB

1)由A(0,2)B(4,2)代入抛物线,得到方程组,解得y=x^2-4x+22)过P点y轴垂线PO'因为AO=2S△APO=1/2*AO*PO’=3/2解得P的横坐标为3/2代入抛物线方程得到P纵坐

如图,抛物线y=1/3x²+bx+c 经过A(-√3,0)B(0,-3)此抛物线的对称轴为直线L,

将A(-√3,0),B(0,-3)代入y=1/3x²+bx+c:0=1-√3b+c;-3=c,解得c=-3b=-2√3/3方程为:y=1/3x²-2√3/3x-3化成y=1/3(x

如图已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4) (1)求这条抛物线的解析式;

1.将点(1,-5)和(-2,4)带入抛物线y=x2+bx+c,则有-5=1+b+c和4=4-2b+c,求出b=-2,c=-4带入得出抛物线的解析式:y=x2-2x-42.设N点为(x1,y1),M点

如图,已知抛物线y=-x2+bx+c经过点A(-1,0)和C(0,4).

(1)y=-x^2+bx+c把点A和C坐标代入得0=-1-b+c和4=c由此得c=4b=3所以y=-x^2+3x+4(2)y=-x^2+3x+4和y=x+1消去y得x^2-2x-3=0x1=-1x2=

已知:如图,抛物线y=x²+bx+c的图像经过点A(-1,0)…

C(0,-3),y(0)=c=-3,y(-1)=1-3+b(-1)=0,b=-2y=x^2-2x-3=(x-1)^2-4,顶点(1,-4)D(m,m^2-2m-3),BC直线:x-y-3=0D到Bc的