如图,已知AP垂直圆o所在平面,AB为直径,C是圆周上不同于AB的任意一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:51:39
如图,已知AP垂直圆o所在平面,AB为直径,C是圆周上不同于AB的任意一点
(2012•临沂二模)如图,AB为圆O的直径,点E、F在圆上且EF∥AB,矩形ABCD所在平面和圆O所在平面垂直,已知A

(Ⅰ)证明:∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,DA⊥AB∴DA⊥平面ABEF,∵BE⊂平面ABEF,∴DA⊥BE∵AB是圆O的直径,∴BE⊥AE∵DA∩AE=A,∴BE⊥

如图 AB是圆o的直径,PA垂直于圆O 所在的平面,C是圆O 上不同于A,B的任一点.求证

证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC

如图:AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的任意一点,

(1)∵PA⊥平面ABC,∴PA⊥BC,又∵∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∴BC⊥AC.∵AP∩AC=A,∴BC⊥平面PAC.∵BC⊂平面PBC,∴平面PAC⊥平面PBC.(2)

如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

证明:连接AG并延长交BC于D,连接PD,连接OG交AC于E则G是重心,∴E为AC中点,而AO=BO,∴OE//BC=>AG=GD,又AQ=QP,∴QG//PD=>QG//面PBC

如图所示,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在平面和圆O所在的平面互相垂直.已知AB=2,E

解:(1)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴CB⊥平面ABEF.∵AF⊂平面ABEF,∴AF⊥CB,又∵AB为圆O的直径,∴AF⊥BF,∴AF⊥平面C

如图,O是三角形ABC所在平面内一点,已知向量OA垂直向量BC,向量OB垂直于向量AC,求证向量OC垂直于向量AB

向量垂直乘积为0如下分解OC*AB=(OA+AC)(AC+CB)=(OA+AC+CB)AC+OA*CB=OB*AC+OA*CB=0+0=0于是OC垂直AB

如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任意一点.

证明:(1)因为PA⊥平面ABC,且BC⊂平面ABC,所以PA⊥BC.又△ABC中,AB是圆O的直径,所以BC⊥AC.又PA∩AC=A,所以BC⊥平面PAC.(2)由(1)知BC⊥平面PAC,∵BC⊂

已知:AB是圆O直径,C是异于A B的圆周上任意一点,PA垂直于圆O所在平面.

连接CA,∵PA⊥⊙O所在平面∴PA⊥BC∵∠BCA为圆周角∴∠BCA=90°∴BC⊥CA∵PA,CA相交与P∴BC⊥平面PAC∴BC⊥PC

如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=

(1)证明:由平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,得CB⊥平面ABEF,而AF⊂平面ABEF,所以AF⊥CB(2分)又因为AB为圆O的直径,所以AF⊥BF,(3分

如图,已知PA垂直圆O所在的平面,AB是圆O的直径,AB=2,C是圆O上的一点,且AC=BC,PC与圆O所在的平面成45

①求证:EF//面ABC证明:∵E是PC的中点,F数PB的中点∴EF是△PBC的中位线∴EF//BC∵BC∈面ABC∴EF//面ABC②求证:EF⊥面PAC∵AB是⊙O的直径∴∠ACB=90°即AC⊥

如图,AB是圆O的直径,CA垂直圆O所在的平面,D是圆周上一点,已知AC=√3,AD=1/2.

其所成二面角即为角ADC,故正切值为CA/AD=2*√3我想是这样再问:再加个问啊,怎么求证,平面ADC⊥平面CDB再答:因为AB是直径,其对应的圆周角ADB必是90度,故两平面之二面角也是90度,所

如图,AB是圆O的直径,CA垂直于圆O所在的平面,D是圆周上一点,求证∶BD垂直于CD

证明∵AB是直径∴AD⊥BD∵CA⊥面ADB∴CA⊥BDCA∩AD=A∴BD⊥面CAD∴BD⊥CD如果你认可我的回答,请点击“采纳回答”,祝学习进步!手机提问的朋友在客户端右上角评价点【评价】,然后就

如图,已知PA垂直于圆O所在平面,AB是圆O的直径,C是圆周上一点,则图中面面垂直的共有几对?

图看不到没搞上来吧再问:图片不太清楚我知道有PAC⊥ABC,PAB⊥ABC,PAC⊥BPC,答案说是四对,另一对我找不出谢谢

如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任一点,求证:平面PAC垂直于平面PBC.

证明:连接AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC∴△PBC所在平面与△PAC

如图,AB是圆O的直径.PA垂直于圆O所在的平面,C是圆O上不同于A,B的任一点,若E.F分别在PB.PC上,AE⊥PB

证明:PA⊥面ABC,→PA⊥BC,又∵AC⊥BC,∴BC⊥面PAC,∵AF在面PAC内,∴BC⊥AF,又∵AF⊥PC,∴AF⊥面PBC,∵PB在面PBC内,∴AF⊥PB,又∵PB⊥AE,∴PB⊥面A

如图,已知平面QBC与直线PA均垂直于直角三角形ABC所在平面,且PA=AB=AC,求证PA平行于平面QBC

图呢再问:再答:做Q垂直BC的一条线QD所以QD垂直平面ABC所以QD垂直AB又因为PA垂直平面ABC所以PA垂直ABPAQD(属于平面QBC)都垂直AB所以PA平行QD所以PA平行平面QBC再问:若

如图,AB是⊙O的直径,点C是圆O上异于A,B的任意一点,直线PA垂直于圆O所在平面,PA=2AC,AD垂直于PC

因为PA垂直于圆O所在平面,BC在圆O所在平面内,所以PA垂直于BC因为AB是圆O直径,所以AC垂直于BC所以BC垂直于平面APC所以BC垂直于PC所以角PCA为平面ABC与平面PBC所成角在Rt三角

如图,P为三角形ABC所在平面外一点,AP=AC,BP=BC,D为PC的中点,直线PC与平面ABD垂直么?为什么?

垂直证明:在三角形APC中,AP=AC,D为PC中点,所以,AD垂直PC同理,BD垂直PC又因为AD,BD相交于点D所以,PC垂直面ABD

如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的一动点.

(1)证明:∵C在圆O上,∴BC⊥AC,∵PA⊥平面ABC,∴BC⊥PA,∵PC⊂平面PAC,∴BC⊥平面PAC,∴BC⊥PC,∴△BPC是直角三角形.(2)如图,过A作AH⊥PC于H,∵BC⊥平面P