如图,在等边△ABC中,点P,Q,R分别在AB,BC,AC上,且PQ⊥BC于点Q

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:35:23
如图,在等边△ABC中,点P,Q,R分别在AB,BC,AC上,且PQ⊥BC于点Q
如图,在等边△ABC中,AB=2,点P是AB边上任意一点(点P可以与点A重合),过点P作PE⊥BC,垂足为E,过点E作E

设BP=x,在直角三角形PBE中,∠BPE=30°∴BE=12x,则EC=2-12x.在直角△EFC中,∠FEC=30°,∴FC=12EC=1-14x.∴AF=2-FC=2-(1-14x)=1+14x

如图,在等边△ABC中,D是AB边上的动点,(不与A、B点重合),以CD为一边,向上作等边△EDC,连接.观察并猜想AE

因为cd等于cebc等于ac角bcd等于角ace(60度减角acd)所以三角形bcd全等于三角形ace所以角eac等于角dbc等于角acb等于60度所以ae平行于bc回答完毕

如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.

(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DF

如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,求证△ABD≌△BCE

证明∵等边△ABC中AB=BC∠ABC=∠BCE=60°又有BD=CE∴△ABD≌△BCE

在等边三角形ABC中,P为等边△ABC外一点,当PB=PC且∠BPC=120°时,点P的位置如图1,易证PB+PC=PA

(1)由题意可知ABPC四点共圆,所以∠APC=∠ABC=60°,在PA上取PD=PC,所以△PCD是正三角形,所以CD=CP,∠ACD=60°-∠BCD=∠BCP,又因为AC=BC,所以△ACD≌△

如图,在等边△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向

1.y=(1/2)PD*([根号3]/2)CQ=-([根号3]/2)x^2+[根号3]x2.设AD、PQ交于点F,作QE⊥BC于E,则有CQ=2CE,已知CQ=2BP,故BP=CQ,又BD=CD,故P

如图,等边△ABC中,点E,F分别是AB,AC的中点,P为BC上一点,连接EP,作等边△EPQ,连接FQ,EP.

第一小问角度有点问题,好像再问:斜的。你几年级啊。字。真不怎么样,不过还是谢谢了。再答:字写得丑啊?是,我的字确实写起来乱七八糟,哈哈

如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F

1、证明:∵等边△ABC∴AB=AC,∠ABC=∠BAC=60∵BD=AE∴△ABD≌△CAE(SAS)∴AD=CE∵△ABD≌△CAE∴∠BAD=∠CAE∴∠DFC=∠CAD+∠CAE=∠CAD+∠

如图,在等边△ABC中,DE分别为BC,AC上一点,且AE=CD,BE交AD于P,求角BPD的度数

∵等边三角形ABC∴AB=BC=AC∠ABC=∠BCA=60°∵CD=AE∴BD=CE在三角形ABD和三角形BCE中AB=BC∠ABD=∠BCEBD=CE∴△ABD≌△BCE∴∠BAD=∠CBE∵∠C

2010•聊城)如图,在等边△ABC中,点D是BC边的中点,

解题思路:平行四边形性质解题过程:见附件同学你好祝你天天开心!最终答案:略

如图,在等边△ABC中,AC=3,点O在AC上,且AO=1.点P是AB上一点,连接OP,以线段OP为一边作正△OPD,且

∵∠C=∠A=∠DOP=60°,OD=OP,∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,∴∠CDO=∠AOP.∴△ODC≌△POA.∴AP=OC.∴AP=OC=AC-AO=2.故答案

如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△A

(1)∵△ABE和△APQ是等边三角形,∴AB=AE,AP=AQ,∠BAE=∠PAQ=∠ABE=∠AEB=60°,∴∠BAE-∠PAE=∠PAQ-∠PAE,∴∠BAP=∠EAQ.在△ABP和△AEQ中

1)如图,在等边△ABC中,BC边上任意取一点P,过点P作AC的平行线,过点C作AB的平行线,两线交于点Q,求证:AP=

1.设QP交AB于点G,利用平行线性质易证△GBP△CPQ为等边△则角PGA=BPQ=120度GQ=AC(平行四边形性质),BG=PG,得AG=QP又GP=BP则△AGP全等△QPB(SAS)则AP=

等边△ABC中,在BC边上任意取一点P,过点P作AC的平行线,

(1)过点P作AC的平行线交AB于E∵AC‖EQ∴∠EQC=60∵∠ACQ=120,∠ACB=60∴∠BCQ=60∴BC=QC∵AC=BC,∠ACB=∠BCQ∴ACP≌BQC∴AP=BQ

如图,在等边△ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合)过点P作PE⊥BC,垂足

(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°AB=AC=BC=2∵PE⊥BC于E∴∠PEB=90°∴△BPE是直角三角形∴BP=2BE同理可证:EC=2FCAF=2AQ∵BP=xAQ=y∴B

如图,在等边△ABC中,AE=CD,AD、BE交于P点,BQ⊥AD于Q,(1)求证:BP=2PQ;(2)连PC,若BP⊥

∵⊿ABE≌⊿ACD∠AEB=∠ADC∠AEB+∠BEC=180º∠ADC+∠ADb=180º∴∠BEC=∠ADB∠C=∠ABD=60º∴∠BAD=180º-∠

如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交

连接OD,∵PO=PD,∴OP=DP=OD,∴∠DPO=60°,∵等边△ABC,∴∠A=∠B=60°,AC=AB=9,∴∠OPA=∠PDB=∠DPA-60°,∴△OPA≌△PDB,∵AO=3,∴AO=

如图,等边△ABC的边长为2,动点P,Q在线段BC 上移动,(都不与B,C重合),点P在Q的左边,PQ=1,过点P作PM

过M作NQ的垂线交与F点要使三角形MCP相似于三角形MAN,所以角AMN=角CMP=30度因为MF平行BC,所以角AMF=60度,角NMF=30度,所以三角形MFN相似于三角形MNA.因为MF=PQ=