如图,在平面直角坐标系中,已知抛物线y=ax² bx的对称轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:42:13
解题思路:本题考查了圆周角与圆心角,圆周角与圆外角,圆内角之间的关系;勾股定理,三角函数值等知识,难度较大,特别是第3小题,要利用圆周角与圆外角及圆内角之间的关系,才能得出结论。解题过程:第(2)题的
1.(-2,2)2.-1,0.53.1.5,-0.25
发了图片,最快回答,
1)角GOA=角MON角AGO=角NMO所以相似(相似三角形的判定有点忘记了,但相信你能解决的)2)先求过点O、A、M的直线方程,即通过该方程解A的坐标,所以先得求M的坐标具体过程如下:过M作MC垂直
从D作AB的垂线,交AB于M,∴DM=y-1,BC=4,MB=1-x,AM=-7-x∴37=(4+y-1)×(1-x)÷2-(-7-x)×(y-1)÷2化简得到:2x-4y+39=0又2x+5y=22
百度文库中有免费下载.
⑴∵ABCD是平行四边形,且AB=6,∴DC=6,又从D(0,3),CD∥AB得,C(6,3),双曲线Y=K/X(K≠0)过C(6,3),∴3=K/6,∴K=18,双曲线解析式为Y=18/X.⑵∵B、
没时间详细解答,给你个思路:1、除开无用条件,原题即是求一点P,P在Y=1/4*X^2上,且P到M(-3,3)的距离加上P到B(0,1)的距离最小2、假设P(x,y),PM=根号[(y-3)^2+(x
写大概思路行吗?4题都要写?再问:第四题再答:ED的长度为Y,可是DE怎么表示?不妨看成ED=EN-DN,ON一段是X也是E点的横坐标。先看EN是在一元二次函数上的一点,那我可以带进函数里,当ON为X
图呢,把图弄上来过A作AE⊥x轴于E,AF⊥CD于F,则AECF是矩形AE∥DC,A是OD的中点得E为OC的中点同理F为DC的中点有OE=1/2OCAE=CF=1/2DCA点坐标(3/2,2)反比例函
分析:由A(-4,0),B(0,3),根据勾股定理得AB=5,而对△AOB连续作三次旋转变换回到原来的状态,并且第三个和第四个直角三角形的直角顶点的坐标是(12,0),所以第(7)个三角形的直角顶点的
1:连接CM,A、M点坐标知道,AM=2,CM=AM=2,O(0,0)坐标原点,推出:OM=1,利用勾股定理:CO平方+OM平方=CM平方推出:OC=根号下3,则C(0,根号下3)我不能打符号,自己打
(2).a你做错了当0≤x≤5时P(5-x,0)Q不变(0,10+x)5≤x≤10时P(x-5,0)Q(0,10+x)b.△APQ在运动过程中,其面积始终是AP×OQ/2∵△APQ的面积为32平方单位
oA:y=4/3x反比例函数表达式:y=12/xC:(4,3)M的坐标为(1.5,2)连接MC与AB的交点就是点P的坐标MC的表达式要求出来
(1)M5(-4,-4);(2)由规律可知,∴的周长是;(3)由题意知,旋转8次之后回到轴的正半轴,在这8次旋转中,点分别落在坐标象限的分角线上或x轴或y轴上,但各点“绝对坐标”的横、纵坐标均为非负数
根号a^2-4+根号4-a^2+16/a+2能不能写具体点根号里都包含哪些?
没图,我来试试.(1)A为(0,0),△ABC边长为2*sqr(3),BC∥x轴,则C应为(sqr(3),-3)(也可是(-sqr(3),-3),因为你没给图,我不知道B和C谁在左边,谁在右边,我姑且
解题思路:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,PA.分别求出PD、DC,相加即可.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.