如图,在圆中,直径cd垂直弦ab,am垂直bc于m.交cd于n链接ad

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:49:38
如图,在圆中,直径cd垂直弦ab,am垂直bc于m.交cd于n链接ad
如图AB为圆O的直径,CD为弦,且CD垂直AB,垂足为H

1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠

如图,在圆O中,AB是直径,CD是弦,CE垂直CD与点c,交AB与点E,DF垂直CD,交AB与点F.求证AE=BF

证:设M为CD中点连接OM,则OM垂直于CD(垂弦定理)又因为CE垂直于CD,DF垂直于CD所以CE平行于OM平行于DF(在同一平面内,垂直于同一直线的两条直线相互平行)又因为M为CD中点(已设)所以

已知如图,在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P,连接BC,AD.求证PC^2=PA*PB

很简单呐解:因为AB为直径且垂直CD所以CP=PD因为角APD=角CPB角B=角D所以三角形APD相似于三角形CPB所以AP比CP=DP比BP所以CP·PD=AP·BP即PC^2=PA*PB

已知如图,在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P,连接BC,AD.求证PC^2=PA*PB 怎么

证明:连接AC、BC则∠ACB=90°∵CP⊥AB∴弧BC=弧BD∴∠A=∠BCP∵∠CPB=∠CPA=90°∴△ACP∽△CBP∴CP/AP=BP.CP∴CP²=AP*PB

如图,在半径为4的圆O中,直径AB垂直弦CD于点E,连接OC,OD,若CD=4根号2,求角COD的度数和弧BD,弧AC的

∵CO²+OD²=CD²∴∠COD=90°∵CO=BO∴△COD是的腰三角形∵AB⊥CD∴∠BOD=∠COB=45°∴BD弧=AC弧=45°

如图,在梯形ABCD中 AB垂直AD CD垂直AD 且AB+CD=BC 求证 以BC为直径的圆0 与AD相切

证明:过O向AD作垂线,垂足为F,即有OF垂直AD,又有AB垂直AD,CD垂直AD所以OF,AB和CD三条直线互相平行.又O是以BC为直径的圆的圆心,所以O是BC的中点.又OF,AB和CD三条直线互相

切割线定理如图,在圆O中,AB是弦,CD为直径,AB垂直CD,H是垂足,点P在DC的延长线上,且角PAH=角POA,OH

∵角PAH=角POA,角PHA=90,∴角PAO=90°∴PA是⊙O的切线设⊙O的半径为3x,则AH^2=(3x)^2-x^2=8x^2AP^2=8x^2+(6+2x)^2=12x^2+24x+36由

已知:如图,在圆O中,直径AB垂直于弦CD于G,E是CD延长线上一点,AE交圆O与F,求证:∠AFC=∠DFE.)

连接AC∵AB是直径AB⊥CD∴AC=AD∴∠ACD=∠ADC∵∠AFC=∠ADC∠ACD=∠DFE∴:∠AFC=∠DFE

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠

如图,已知圆O的弦CD垂直于直径AB,点E在CD上,且EC=EB

EC=EB推得角ECB=角EBC有垂直得角ECB=角D则△CEB~△CBDCE/CB=CB/CD则CD=25/3则ED=16/3

如图,圆O中,直径CD垂直弦AB于E,AM垂直BC于M,交CD于N,连AD

联接BD,因为CD为直径,点b为圆上一点,所以DB垂直于BC,又因为AM垂直于BC,所以AM平行于BD,所以角MAB=角DBA,因为CD垂直于弦AB,所以AE=BE,又角AEC=角DEB(对顶角相等)

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

已知:如图,圆O中,直径CD垂直弦AB于E,弦BE平行CD.求证:劣弧AB=2弧DF.(第3题)

连结cb因为bf平行于cd且ab垂直于cd所以cb=df所以弧cb=弧df因为cd是直径且垂直ab故c点评分弧ab所以弧ab=2弧cb=2弧df

如图,已知,在圆O中,直径AB=4,点E是OA上任意一点,过E作弦CD垂直AB

(1)∵OA过圆心且CD⊥AB∴弧AC=弧AD∴∠F=∠ACD又∵∠CAF=∠CAF∴△ACH∽△AFC(2)连接BC∵AD为直径∴∠ACB=90°又∵CE⊥AB∴AE×AB=AC²∵△AC

如图,在半径为5的圆O中,AB直径,弦CD垂直AB,弦AD=2倍根号5,求cosD的值

连接BD,则角ADB=90度角ABD=角ADC=角D(同为BDC的余角)在Rt△ADB中,sinABD=AD/AB=2*5(1/2)/5cosABD=(1-cos^2ABD)^(1/2)cosABD=

如图,在圆O中,如果作两条互相垂直的直径AB.CD,那么弦AC是圆O内接正四边形的一边.如果以点A为圆心,圆O的半径为半

AE=OE=AO三角形AOE为正三角形,角AOE=60度,角COE=30度,角FOE=120度则AE,CE,EF分别是圆O的内接六边形,正十二边形,正三角形的一边

如图,在圆O中,AB CD 是俩条弦 OE垂直AB OF垂直CD 垂足为EF 1

①OE=OF,因为OA=OB=OD=OC且∠AOB=∠COD所以△AOB与△DOC全等垂线也相等②AB=CD弧AB=弧CD∠AOB=∠COD,因为圆中任意与圆点距离相等的弦的长度都相等,弦相等弧一定相