如图,在圆o中,弦cd交直径ab于e,角aed=45

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:11:44
如图,在圆o中,弦cd交直径ab于e,角aed=45
已知如图在圆o中AB是直径,弦CD与AB交于p,AP=2,BP=6,∠APC=30,求CD的长

作OF⊥CD与F,则F为CD中点.直径AB=8,OA=4,OP=4-2=2,直角三角形OFP中,∠DPB=∠APC=30°,所以OF=1.直角三角形OCP中,斜边OC是半径4,利用勾股定理,CF=√(

如图,在圆O中,AB是直径,CD是弦,CE垂直CD与点c,交AB与点E,DF垂直CD,交AB与点F.求证AE=BF

证:设M为CD中点连接OM,则OM垂直于CD(垂弦定理)又因为CE垂直于CD,DF垂直于CD所以CE平行于OM平行于DF(在同一平面内,垂直于同一直线的两条直线相互平行)又因为M为CD中点(已设)所以

如图,AB为圆O的直径,CD为圆O的弦,且CD⊥AB,垂足为H,∠OCD的平分线CE交圆O于点E,连接OE,求证:E为A

∵AB为直径∴∠ACB=90°∵CD⊥AB∴∠ACH+∠CAB=90°∠ABC+∠CAB=90°∴∠ACH=∠ABC∵O为圆心,AB为直径∴OB=OC=OA∴∠OCB=∠OBC=∠ABC∵CE为∠OC

如图,圆o中AB是直径,P是OB中点,AB=8,弦CD交AB于P,∠APC=30度,求CD

过O作OE⊥CD,交CD于E∵直径AB=8∴OB=4∵P是OB中点∴OP=OB/2=4/2=2∵∠APC=30,OE⊥CD∴OE=OP×sin30=2×1/2=1∴CE²=OC²-

如图,圆O中,AB为直径,CD平分角ACB,交圆O于D,求证:CA+CB/CD=根2

证明:延长CB到E,使BE=AC,连接DE∵AB是⊙O的直径∴∠ACB=90°∵CD平分∠ACB∴∠ACD=∠BCD=45°∴AD=BD(等角对等弦)又∵∠DBE=∠DAC(圆内接四边形外角等于内对角

如图,A,B,C三点在圆O上,CE是圆O的直径,CD⊥AB于D,延长CD交园O于F,连接AE,BF.

证明:1、∵直径CE∴∠CAE=90∴∠ACE+∠AEC=90∵∠AEC、∠ABC所对应圆弧都为劣弧AC∴∠AEC=∠ABC∴∠ACE+∠ABC=90∵CD⊥AB∴∠BCF+∠ABC=90∴∠ACE=

如图,A、B、C三点在圆O上,CE是圆O的直径,CD⊥AB于D,延长CD交圆O于F,连接AE、BF.求证:(1)∠ACD

1、∠ACE+∠AEC=90°∠DCB+∠ABC=90°∠AEC=∠ABC所以∠ACE=∠DCB又因为∠ACE=∠ACF+∠FCE∠DCB=∠BCE+∠ECF所以∠ACD=∠BCE2、因为∠ACE=∠

已知:如图,在圆O中,直径AB垂直于弦CD于G,E是CD延长线上一点,AE交圆O与F,求证:∠AFC=∠DFE.)

连接AC∵AB是直径AB⊥CD∴AC=AD∴∠ACD=∠ADC∵∠AFC=∠ADC∠ACD=∠DFE∴:∠AFC=∠DFE

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)∠CPD=∠COB.…(1分)理由:如图所示,连接OD.…(2分)∵AB是直径,AB⊥CD,∴BC=BD,…(3分)∴∠COB=∠DOB=12∠COD.…(4分)又∵∠CPD=12∠COD,∴∠

6.如图,在圆o中,AB为直径,弦CD交AB于点E,且OE=CE,求证:弧BD=3弧AC.

连接OC,OD∵CE=OE∴△CEO为等腰三角形,∴∠COE=∠OCE∠CEO=180°-2∠COE∵∠CEO+∠OED=180°∴∠OED=2∠COE又∵OC,OD半径∴∠OCE=∠ODE∴∠ODE

如图,圆O中,直径CD垂直弦AB于E,AM垂直BC于M,交CD于N,连AD

联接BD,因为CD为直径,点b为圆上一点,所以DB垂直于BC,又因为AM垂直于BC,所以AM平行于BD,所以角MAB=角DBA,因为CD垂直于弦AB,所以AE=BE,又角AEC=角DEB(对顶角相等)

如图在⊙O中,C为ACB的中点,CD为直径,弦AB交CD于P,又PE⊥CB于E,若BC=10,且CE:EB=3:2,求A

∵BC=10,且CE:EB=3:2,∴CE=6,BE=4,∵C为ACB的中点,CD为直径,∴CD⊥AB,∴PB=PA,∠BPC=90°,∵PE⊥BC,∴∠BEP=90°,∵∠EBP=∠PBC,∴△BE

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD

因为同弧对应的圆周角,等于圆心角的一半,而∠COD是劣弧CD所对的圆心角,∠CPD是同一劣弧CD所对的圆周角,因此∠CPD=1/2∠COD;又CD垂直于AB,故∠COB=1/2∠COD,因此∠CPD=

如图,圆O中,弦CD垂直于直径AB,E为AB延长线上一点,CE交圆O于F

(连接DE)记DE与⊙O的交点为G,∵DF=EF,∴∠FDE=∠FED,∠CFD=∠FDE+∠FED=2∠FDE,∵CD⊥AB,AB是直径,∴弧AC=弧AD,连接AF,则∠CFA=∠AFD,∠CFD=

如图,在圆O中,AB,CD为两条弦,且AB‖CD,直径MN经过AB的中点E,交CD于F.1.求

因为MN过圆心,且经过AB中点,所以MN垂直于AB,所以MN垂直于CD,所以MN与CD交于CD的中点,因此F为CD中点.因为MN垂直于AB和CD,所以M,N为狐AB,CD的中点,即狐AM=BM,CN=

如图在圆o中,ab为直径,bc与圆o相切于点B,连接co,AD平行于oc且交圆o于点D,求证:cD是圆o的切线

连接BD交OC于E,由于AD//OC,所以BE/DE=Bo/AO=1,所以E是BD中点,因为三角形BDO是等腰三角形,所以OC垂直于BD,即使OC是BD的垂直中心线,所以CB=BD,所以三角形BCO全

如图在半径为4的圆O中,AB.CD是两条直径,M为OB的中点,CM的延长线交圆O于点E

)这是相交弦定理,连AC,EB,因∠CAB=∠CEB,又有对顶角故三角形AMC∽EMB,所以AM*MB=EM*MC2)在直角三角形CDE中,CE=√(CD^2-DE^2)=√(64-15)=7EM=A