如图,在四边形abcd中,连接BD,点E,F分别在AB和CD上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:53:22
(1)∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∴∠ABD=∠ADB=60°.∵BC=CD,∴△ABC≌△ADC,∴∠BAC=∠DAC=30°,∠ACB=∠ACD=60°.∴∠AEB=∠
一楼想多了,这是初中生.过点A、D分别作BC的垂线,垂足分别为E、F,因AB=AC,所以E为BC中点,所以DF=AE=0.5BC=0.5BD,所以∠CBD=30°,∠BCD=0.5(180°-∠CBD
不知道说的是哪个角,反正OA=OC(斜边中线等于斜边一半)那么角OAC=角OCA
因为角ADB=90,E是AB中点,所以DE=EB,EB平行等于DF,所以BFDE为菱形.
(1)在△ABE和△CDA中AE=ACAB=DCBE=AD,∵△ABE≌△CDA(SSS);(2)∵△ABE≌△CDA,∴∠E=∠CAD.∵AE=AC,∴∠E=∠ACE∴∠ACE=∠CAD,∴AD∥E
1.做CM垂直AB于M,因为角B等于45度,所以CM=BM又因为CM=DA,由题可知DE=DA,所以BM=DE,且CD=AM,所以CE=AB.因为是梯形ABCD所以CD平行AB,所以CE平行AB.综上
过E作BC或AD的平行线EF交AB于F,由平行线等分线段定理可知,AF=BF,又三角形ABE是直角三角形,所以EF是它的斜边上的中线,由定理知EF等于斜边的一半,即BF=EF由此可知∠FBE=∠FEB
(1)△AEH和△CFG的面积是四边形ABCD的面积的四分之一.证明:因为E、F、G、H分别为各边的中点所以EH是△ABD的中位线,GF是△CBD的中位线.所以AE/AB=AH/AD=1/2,CF/C
∵∠D=90°∴由勾股定理得:AC²=CD²+AD²∴AC=4∵BC=3,AB=5∴AB²=AC²+BC²∴AC⊥BC∴S△ABC=AC*B
证明:∵AC平分∠DAB(1) ∴∠DAC=∠BAC &nb
当EB⊥CD时,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,在△BCF和△DCF中,BC=CD∠BCF=∠DCFCF=CF∴△BCF≌△DCF(SAS),∴∠C
连接BD,因为E是AD中点,所以S△AEB=S△BDE因为F是BC中点,所以S△DFC=S△BDF所以S△AEB+S△DFC=S△BDE+S△BDF=S四边形BEDF=6所以S四边形ABCD=S△AE
连接bd,因为f,g为bc,dc中点,所以fg平行且等于二分之一bd,同理可得,eh平行且等于二分之一bd,一组对边平行且相等的四边形是平行四边形,所以efgh是平行四边形
如果∠DCA是∠1的话CD//AB∠1=∠CAE∠1=∠2得出∠2=∠CAE得出EF//ACAC平分DAE得出∠DAC=CAB得出DAC=∠DCA得出∠CAE=20∠2=20.∠B=73°得出∠BFE
每次连接中点后得到的图形面积是原图形面积的一半,答案是S/2^n,S是原图形面积,也就是ab/2,最后应该是ab/2^(n+1)
分别过A做CD的垂线,交CD于E,做BC的垂线,交BC的延长线于F,得AE=DE=2,AC=4,CE=2√3所以△ACD面积为0.5*AE*CD=2+2√3由AC=4,得AF=2,CF=2√3,又AB
(1)证明:∵点A1,D1分别是AB、AD的中点,∴A1D1是△ABD的中位线∴A1D1∥BD,A1D1=12BD,同理:B1C1∥BD,B1C1=12BD∴A1D1∥B1C1,A1D1=B1C1=1
解题思路:利用三角形全等求证。解题过程:解:(1)①②④⇒AD∥BC;证明:在AB上取点M,使AM=AD,连接EM∵AE平分∠BAD∴∠DAE=∠MAE
因为角1=角2,AC=BD,AB=BA,那么三角形ABC全等于三角形BAD,所以BC=AD=CD,角CBA=角DAB,又因为AC垂直BC,所以角ADB=角BCA=90度又因为角1=角2,所以角DAC=